

iPads

- To view the materials for this Summit, please log on to the iPad with your e-mail address
 - View slides
 - Answer questions
 - Take notes
 - Submit questions to panel
 - Program evaluation

Throughout the Summit, use the same e-mail address to log on to any iPad.

Program Faculty

Sarah L. Patches Baker FNP-BC, MSN

Dana-Farber Cancer Institute Boston, Massachusetts

Shonali Midha, MD

Dana-Farber Cancer Institute Boston, Massachusetts

Clifton C. Mo, MD

Dana-Farber Cancer Institute Boston, Massachusetts

Paul G. Richardson, MD

Dana-Farber Cancer Institute Boston, Massachusetts

Omar Nadeem, MD

Dana-Farber Cancer Institute Boston, Massachusetts

5

Summit Agenda

Time (ET)	Topic	Speakers	
9:00 — 9:15 AM	Introduction to MMRF	Mary DeRome, MS	
9:15 – 9:30 AM	Welcome	Paul G. Richardson, MD	
9:30 - 10:00 AM	Newly Diagnosed Multiple Myeloma: Diagnosis and Induction Therapy	Paul G. Richardson, MD	
10:00 – 10:30 AM	High-Dose Chemotherapy and Stem Cell Transplantation, Maintenance Therapy, and Treatment Goals	Clifton C. Mo, MD	
10:30 - 10:45 AM	Break		
10:45 – 11:15 AM	Relapsed/Refractory Multiple Myeloma	Omar Nadeem, MD	
11:15 – 11:45 AM	Supportive Care	Sarah L. Patches Baker FNP-BC, MSN	
11:45 АМ — 12:30 РМ	Lunch		
12:30 – 12:45 РМ	Patient Speaker	Deb Graff	
12:30 – 1:15 PM	Immunotherapy	Shonali Midha, MD	
1:15 — 1:30 РМ	Hot Topic 1: Multiple Myeloma Precursor Conditions	Omar Nadeem, MD	
1:30 — 1:45 РМ	Hot Topic 2: High-Risk Multiple Myeloma	Clifton C. Mo, MD	
1:45 – 2:00 PM	Hot Topic 3: New Drugs on the Horizon	Paul G. Richardson, MD	
2:00 - 3:00 PM	Town Hall Q&A	All Faculty	
3:00 – 3:15 PM	Closing Remarks	Mary DeRome, MS	

MMRF Introduction Mary DeRome, MS MMRF

7

The Work of the MMRF

The MMRF does three things in relentless pursuit of its mission to accelerate a cure for each and every myeloma patient.

We accelerate new treatments

Bringing next-generation therapies to patients faster

We drive precision medicine

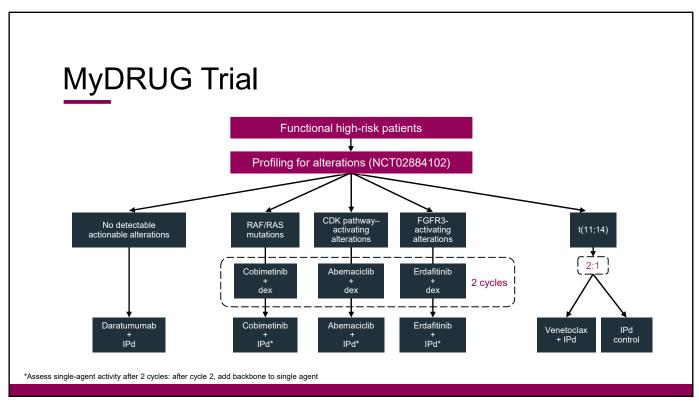
Using data to deliver better answers and more precise treatments for patients

We empower patients

Putting them on The Right Track and guiding them to the right team, tests, and treatments to extend their lives

MMRF CoMMpass Study: Advancing Personalized Medicine Research

- Landmark study focusing on the genomics of myeloma
- Goals
 - Learn which patients respond best to which therapies
 - Identify new targets and new hypotheses
- Newly diagnosed patients are followed for at least 8 years


All participants undergo a type of detailed DNA testing called <u>genomic sequencing</u> at diagnosis and each relapse.

a

CoMMpass Is a Trial of Discovery

- CoMMpass data has
 - Provided the myeloma community with information on
 - · Frequency of genetic abnormalities
 - How genetic abnormalities play a role in myeloma
 - Drive multiple myeloma cell growth and survival
 - o Contribute to drug resistance
 - May predict which patients respond to which therapy
 - Genetic abnormalities that help refine risk assessment
 - Led to conception of the MyDRUG trial

11

MMRF Research Initiatives

- 1. MMRF Myeloma Accelerator Challenge (MAC) Grants
 - Broad, multi-institutional research grants designed to advance clinical trial concepts in the areas of
 - High-risk newly diagnosed multiple myeloma (NDMM)
 - High-risk smoldering myeloma (SMM)
 - Each research network will be funded up to \$10M over 3 years
- 2. MMRF Horizon Adaptive Platform Trials
 - · Paired with MAC grants
 - Done in collaboration with 13 MMRC sites
 - Trials in relapsed/refractory myeloma, high-risk NDMM, high-risk SMM

For more information, visit themmrf.org

2023 Myeloma Accelerator Challenge Program Grant Recipients

Transforming Treatment of High-Risk Myeloma

Network includes: Tisch Cancer Center at Mt Sinai, Albert Einstein Medical College, Hackensack University Medical Center, Stanford University Medical Center, UCSF, Washington University of Saint Louis

Pieter Sonneveld, MD, PhD

A Systems Biology Approach to High-Risk Myeloma

Network includes: Erasmus Medical Center, Rotterdam; Amsterdam University Medical Centers; Julius Maximilian University of Wurzburg; University of Turin; University of Salamanca

Each network will receive \$7M over 3 years for a total \$21M investment by the MMRF, meant to foster collaboration and advance compelling hypotheses that are ready for rapid testing in clinical trials.

Sagar Lonial MD

Clinical and Multi-Omics Platforms to Define High-Risk Smoldering Myeloma

Network includes: Emory University, Atrium Health Levine Cancer Institute, Icahn School of Medicine at Mt. Sinai, Mass General Hospital, Mayo Clinic, MSKC Institute, Dana-Farber Cancer Institute

13

Welcome!

Paul G. Richardson, MDDana-Farber Cancer Institute
Boston, Massachusetts

Question

Are you a...

- 1. Patient
- 2. Caregiver (family member or friend who helps patient manage his or her disease)
- 3. Other

15

Question

At what stage is your myeloma? (If you are a caregiver, what is the stage of the patient's myeloma?)

- 1. Newly diagnosed
- 2. Relapsed/refractory
- 3. Remission: still on therapy
- 4. Remission: not on therapy
- 5. MGUS or smoldering myeloma not currently requiring treatment
- 6. Other
- 7. I don't know.

Question

Have you had a stem cell transplant?

- 1. No, but I will soon!
- 2. No, but I am considering one (or my doctor is discussing with me).
- 3. No, my doctor tells me I am not a candidate.
- 4. Yes
- 5. Not applicable

17

Question

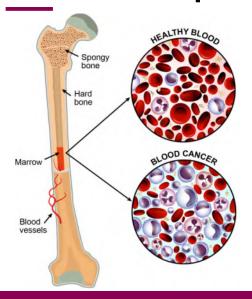
Do you know if you had any molecular characterization performed on your tumor, such as FISH, cytogenetics, or sequencing?

- 1. No
- 2. Yes, I had FISH.
- 3. Yes, I had cytogenetics.
- 4. Yes, I had sequencing.
- 5. Yes, I had more than one of these tests performed.
- 6. I don't know.

Question

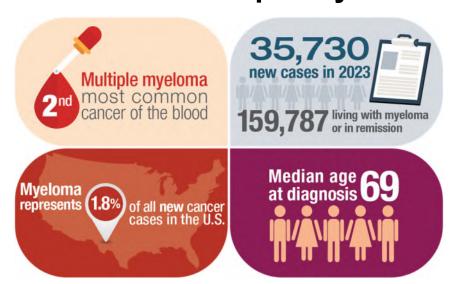
Have you and your care team ever discussed the possibility of you joining a clinical trial that you are eligible for? (If you are a caregiver, do you know if joining a clinical trial has ever been discussed?)

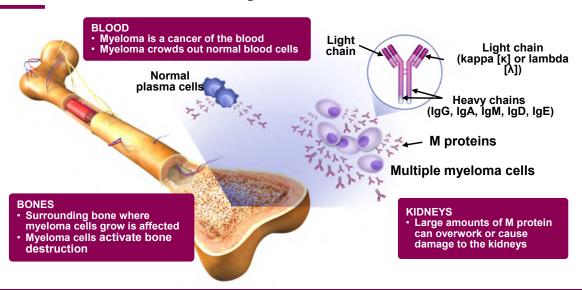
- 1. Yes
- 2. No
- 3. I don't know.


19

Newly Diagnosed Multiple Myeloma: Diagnosis and Induction Therapy

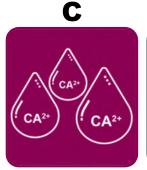
Paul G. Richardson, MD
Dana-Farber Cancer Institute
Boston, Massachusetts


What is multiple myeloma?


- Multiple myeloma is a blood cancer that starts in the bone marrow, the place where all blood cells are produced
- Multiple myeloma is caused when a type of white blood cell called a plasma cell becomes cancerous and grows out of control

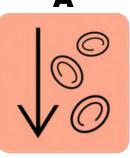
21

How common is multiple myeloma?


Multiple Myeloma Affects Your Bones, Blood, and Kidneys

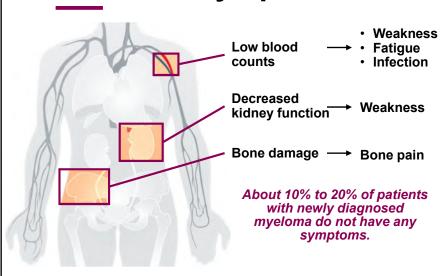
23

Multiple Myeloma Affects Your Bones, Blood, and Kidneys


The clinical features that are characteristic of multiple myeloma

High levels of **c**alcium in the blood

Decreased kidney (<u>r</u>enal) function



Low amount of red blood cells (<u>a</u>nemia)

Presence of **b**one damage

Effects of Myeloma and Common Symptoms

Disease presentation and myeloma-related complications after myeloma diagnosis are different in patients by race

More common in Black patients

- Hypercalcemia
- Kidney dysfunction
 - Hemodialysis
- Anemia

Less common in Black patients

Bone fractures

25

Infections and Vaccinations in Multiple Myeloma

Risk of infection higher for myeloma patients than for general population

- Types of infections include
 - Bacterial: pneumonia (an infection of the lungs), bacteremia
 - Viral: varicella zoster (shingles), influenza, COVID

Preventive strategies (prophylaxis) are recommended

- · Hand-washing, avoiding sick contacts
- Vaccines/pre-exposure antibodies
- Other precautions (antibiotics, growth factors)

Demographic Risk Factors: Multiple Myeloma

Older age

Male sex

Obesity

Race: 2× incidence in African Americans

Schinasi LH et al. *Br J Haematol*. 2016;175:87. Thordardottir M et al. *Blood Adv*. 2017;1:2186.

Family history

- One first-degree relative with multiple myeloma
- Relatives of multiple myeloma patients have more monoclonal gammopathy of undetermined significance (MGUS)
- Current recommendation is to <u>not</u> screen families

27

Following the Right Track Will Help Patients Get the Best Treatment and Results for Their Specific Type of Myeloma

Right Team

Access experts and centers that have extensive experience treating multiple myeloma

Right Tests

Get the information, tests, and precise diagnoses to make the right treatment decisions

Right Treatment

Work with your team to decide on the best treatment plan and identify clinical trials that are right for you

The Right Team

Connect with a myeloma specialist—a doctor who diagnoses and treats a high number of myeloma patients

Seek a second opinion at any point in your journey

Available resources

MMRF's online myeloma treatment locator: themmrf.org/resources/find-a-treatment-center

Contact the MMRF Patient Navigation Center: themmrf.org/resources/ patient-navigation-center 1-888-841-6673

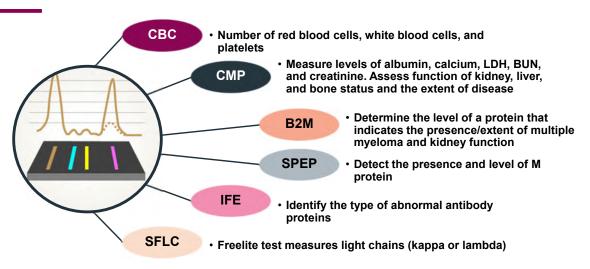
29

The Right Tests: Common Tests Conducted in Myeloma Patients

 Confirms the type of myeloma or precursor condition

Bone marrow biopsy

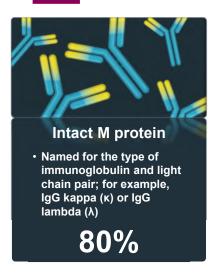
- Confirms diagnosis of myeloma
- Determines how advanced the myeloma or precursor condition is


Imaging tests

 Detects the presence and extent of bone disease and the presence of myeloma outside of the bone marrow

Learn Your Labs!

Blood Tests



CBC, complete blood count; CMP, complete metabolic panel; B2M; beta-2 microglobulin; SPEP, serum protein electrophoresis; IFE, immunofixation electrophoresis; SFLC, serum free light chain assay; LDH, lactate dehydrogenase; BUN, blood urea nitrogen

31

Learn Your Labs! Urine Tests Detect Bence Jones proteins (otherwise known as myeloma light chains) Determine the presence and levels of M protein and Bence Jones protein and Bence Jones protein

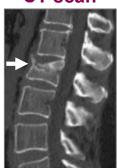
Types of Multiple Myeloma Based on Blood or Urine Tests

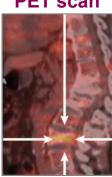
Non-secretory
• No M protein present

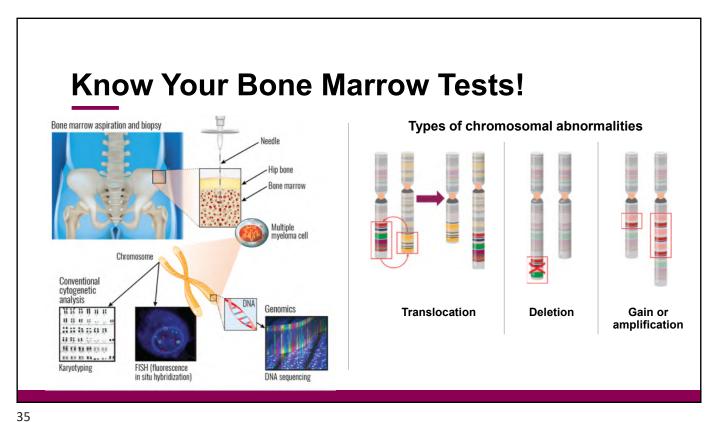
33

Know Your Imaging Tests!

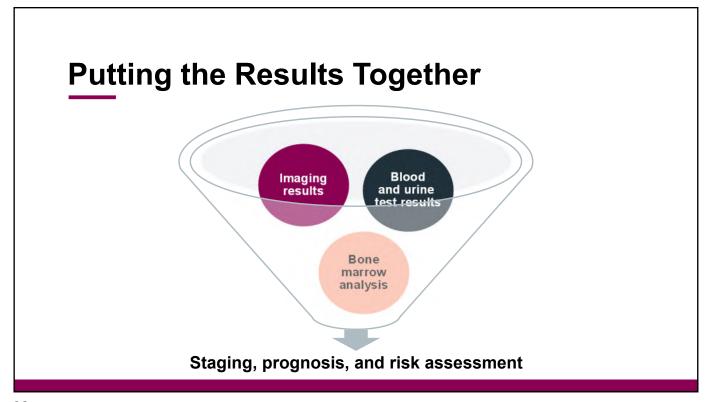
Assess changes in the bone structure and determine the number and size of tumors in the bone


X-ray


MRI



CT scan



PET scan

))

Multiple Myeloma Prognosis and Risk

Revised International Staging System (R-ISS)

R-ISS stage	Laboratory measurements	
1	Serum β2M level <3.5 mg/L Serum albumin level ≥3.5 g/dL No high-risk CA* Normal LDH level	
II	All other possible combinations	
Ш	• Serum β2M level ≥5.5 mg/L • High-risk CA* or high LDH level	

*High-risk chromosomal abnormality (CA) by FISH: del(17p) and/or t(4;14) and/or t(14;16)

Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Guidelines

<u>High risk</u>

- · High-risk genetic abnormalities
 - t(4;14)
 - t(14;16)
 - t(14;20)
 - del 17p
 - p53 mutation
 - gain 1q
- R-ISS Stage 3
- · High plasma cell S phase
- GEP: high-risk signature
- Double-hit myeloma: any two high-risk genetic abnormalities
- Triple-hit myeloma: three or more high-risk genetic abnormalities

Standard risk

- All others including:
- Trisomies
- t(11;14)
- t(6;14)

β2M; beta-2 microglobulin; LDH, lactate dehydrogenase; GEP, gene-expression profiling Greipp PR et al. *J Clin Oncol.* 2005;23:3412; Palumbo A et al. *J Clin Oncol.* 2015;33:2863; Mikhael JR et al. *Mayo Clin Proc.* 2013;88:360.

Currently cannot identify with great certainty all high-risk patients.

37

Multiple Myeloma Prognosis and Risk

Many blood test and bone marrow biopsy test results can determine a patient's risk for myeloma that is aggressive (high risk) or not (standard risk) based on the R-ISS

Standard risk

R-ISS Stage I

- Serum β2M level <3.5 mg/L
- Serum albumin level ≥3.5 q/dL
- No high-risk chromosomal abnormality*
- Normal LDH level

All other possible combinations of the test results means that a patient is **R-ISS stage II**

High risk

- Serum β2M level ≥5.5 mg/L
- High-risk chromosomal abnormality* or high LDH level

*High-risk chromosomal abnormality by FISH: del(17p) and/or t(4;14) and/or t(14;16)

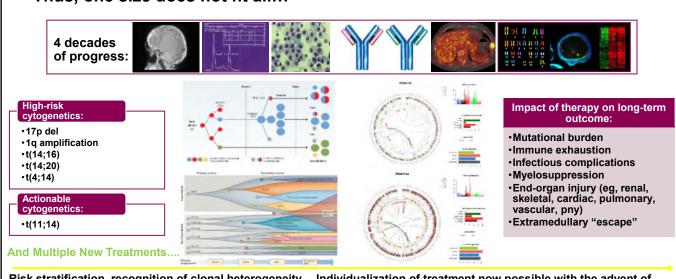
R-ISS, Revised International Staging System; β2M; beta-2 microglobulin; LDH, lactate dehydrogenase; FISH, fluorescence in situ hybridization

The Right Treatment

Know the treatment options available to you based on your myeloma subtype at each stage of your disease.

Be aware of the pros and cons of each option.

Clearly communicate your treatment goals and concerns to the care team.

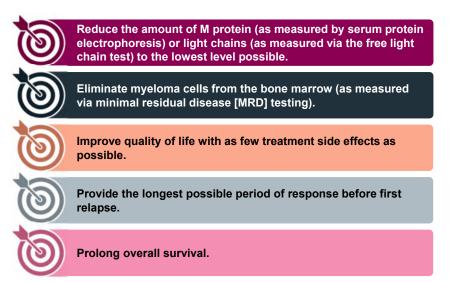


Find clinical trials that are right for you.

39

MM is not one disease

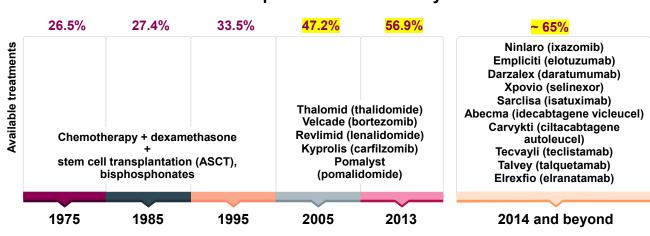
Highly complex at diagnosis and at relapse due to genomic events and clonal evolution with numerous mechanisms of resistance Thus, one size does not fit all...

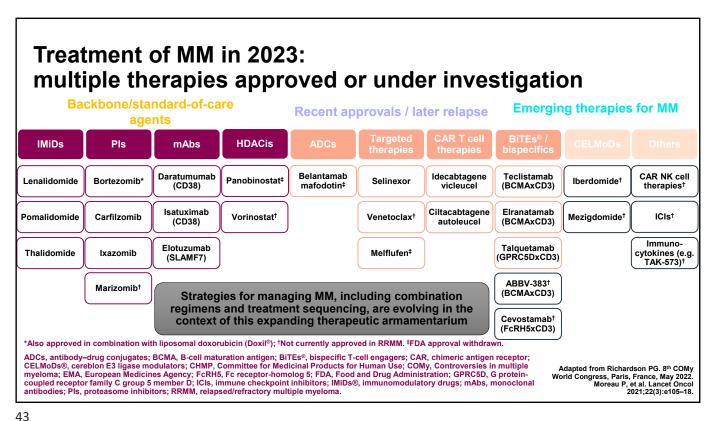


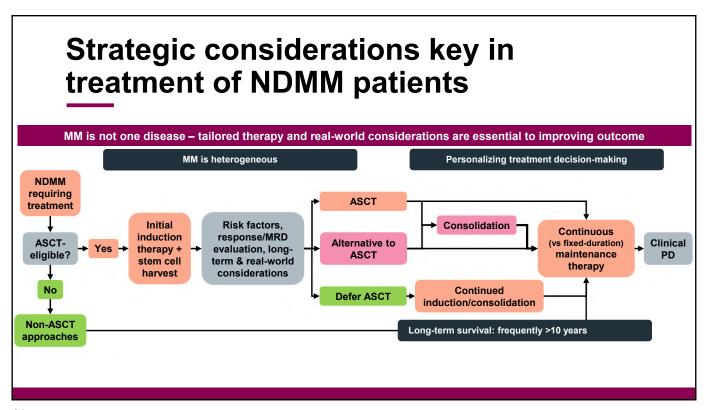
Risk stratification, recognition of clonal heterogeneity... Individualization of treatment now possible with the advent of novel therapies...

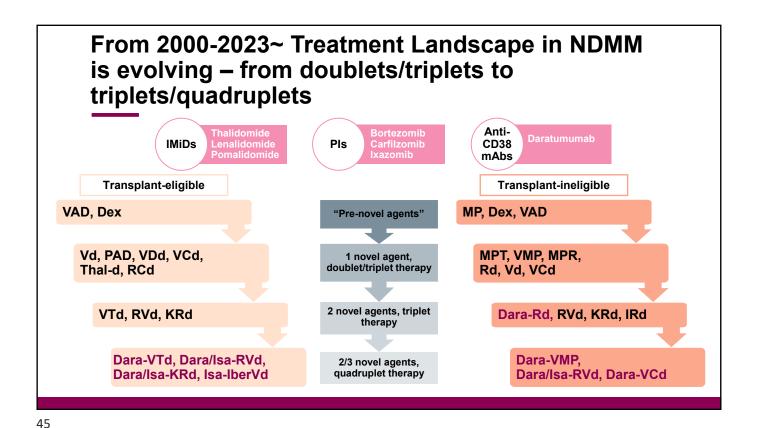
Drach J. ASH 2012, Morgan GJ, et al. Nat Rev Cancer 2012;12(5):335–48. Manier S, et al. Nat Rev Clin Oncol 2017;14(2):100–13. Samur MK, et al. Blood 2020:136(suppl):abstract 61. Richardson PG. MMRF 2021.

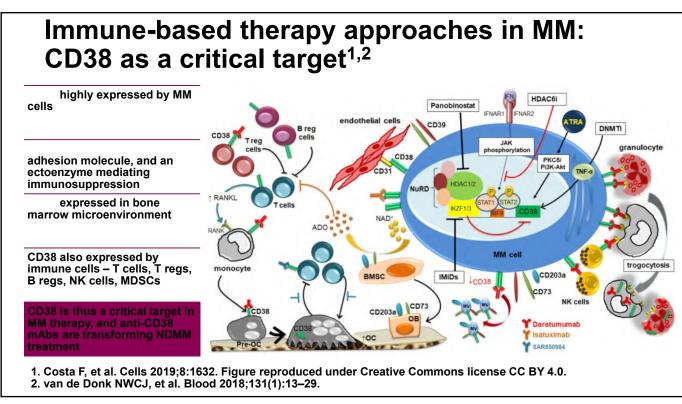
Courtesy of Nikhil Munshi MD

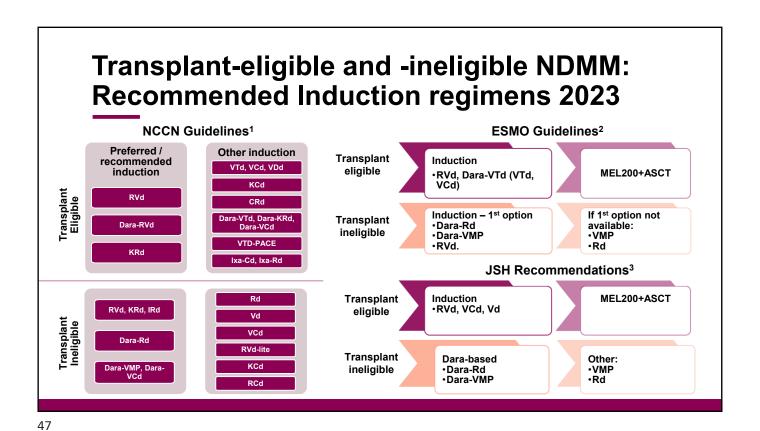

Getting the Right Treatment: Goals of Multiple Myeloma Therapy

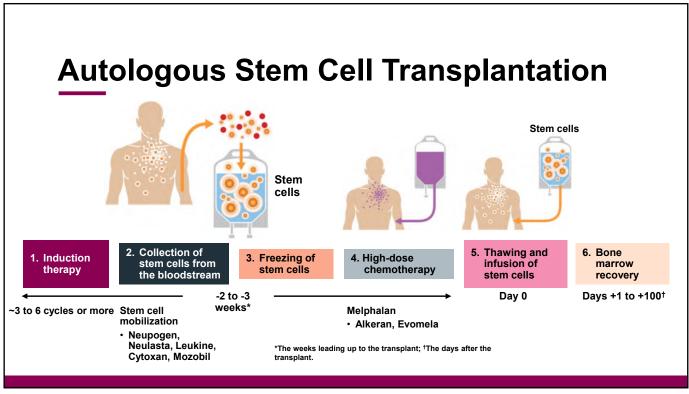


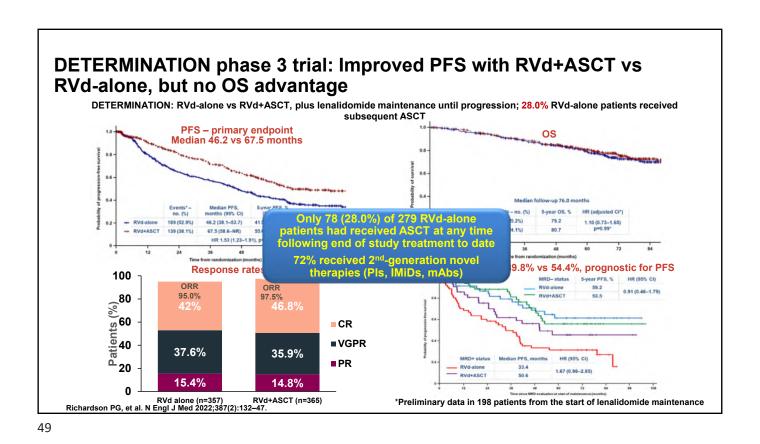

41

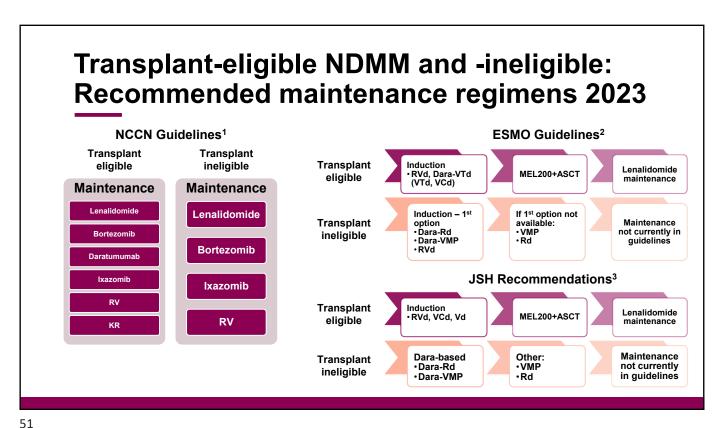

Myeloma Survival Has Improved Over Time, Mainly Due to Novel Agents and Immune Therapies (including mAbs)

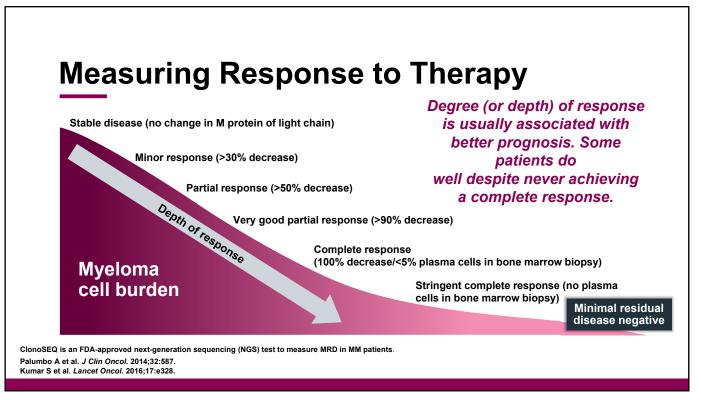

The percentage of people expected to survive 5 years or more after being diagnosed with myeloma has dramatically improved in the last 20 years











)FTFRMINA	ATION: sa	afety nrof	ile of RVd+ASCT vs	: RVd-	
lone		aroty pro:		, ittu	
AE, % (all treatment)	RVd-alone (N=357)	RVd+ASCT (N=365)	Transient but clinically meaningful decrease in QoL with earl ASCT, with subsequent recovery during medium-term follow-		•
Any	78.2 *	94.2 *	5-year cumulative incidence of SPN	1c	•
Any hematologic	60.5 *	89.9 *	(RVd-alone vs RVd+ASCT):	115	
Any grade 5 (fatal) AE	0.3	1.6 [†]	• All : 9.7% vs 10.8% (Invasive: 4.9% vs 6.5%) • Hematologic: 1.59% vs 3.52%		
Neutropenia	42.6	86.3		DV/I alama	DV/J: AO
Thrombocytopenia	19.9	82.7	SPMs	RVd-alone (N=357)	RVd+AS0 T (N=365
Leukopenia	19.6	39.7		10.4	10.7
Anemia	18.2	29.6	Any, %		
Lymphopenia	9.0	10.1	Any invasive SPM, %	5.3	6.8
Febrile neutropenia	4.2	9.0	Any hematologic SPM, %	2.5	3.6
Diarrhea	3.9	4.9	ALL, n	7	3
Nausea	0.6	6.6	AML/MDS, n	0 ‡	10 ‡
Mucositis oral	0	5.2	CLL/CML, n	2	0
Fatique	2.8	6.0	<u> </u>	3.4	3.3
Fever	2.0	5.2	Any solid tumor SPM, %	3.4	3.3
Pneumonia	5.0	9.0	Any non-invasive solid tumor SPM, %	0	0.5
Hypophosphatemia	9.5	8.2			
Neuropathy	5.6	7.1	Any non-melanoma skin cancer, %	5.9	4.1

ЭТ

Where is the treatment of newly diagnosed myeloma going?

Staging with genomics and advanced imaging

Higher efficacy using four-drug regimens, plus anti-resorptive therapy

Precision medicine and targeted therapies in subsets of patients—for example, t(11;14)

MRD-directed/ response adapted therapy

Minimize long-term toxicities since myeloma patients living (much) longer ~ evolving role of ASCT

New drug classes and impact of immunotherapies

53

Summary

- Multiple myeloma is a rare blood cancer that can negatively affect the bones, kidneys, and bone marrow, leading to lowered blood counts.
- The prognosis of multiple myeloma depends on the genetic makeup of the myeloma cell and its chromosomes; R-ISS is used for staging in multiple myeloma.
- Survival rates are improving because of new drugs and new combinations of drugs, including immune therapies and especially mAbs.
- The treatment paradigm will continue to change with the approval of additional novel agents.
- Nnowledge is power: right team, right test, right treatment.

Be an informed and empowered part of your health care team!

Please take a moment to answer two questions about this presentation.

55

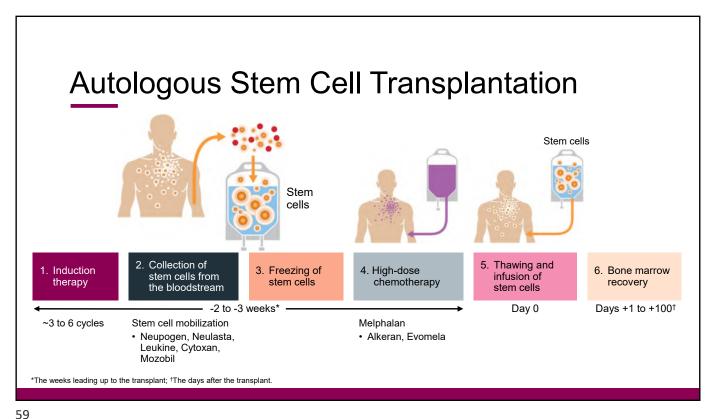
High-Dose Chemotherapy and Stem Cell Transplantation, Maintenance Therapy, and Treatment Goals

Clifton C. Mo, MD
Dana-Farber Cancer Institute
Boston, Massachusetts

High-Dose Chemotherapy and Stem Cell Transplantation

- Remission lasts longer
- Can be done early on or later (or both)
- Some patients will not qualify
 - Older/frail patients
 - Comorbidities
- Dose reduced melphalan
 - Age >75
 - Kidney disease

57


What does transplant mean?

Understanding the basics of autologous stem cell transplantation

Blood-forming stem cells are collected from the patient's own blood. Stem cells are frozen and stored.

Patient gets high-dose chemotherapy: melphalan. Most myeloma cells are destroyed; some normal cells (hair follicles, taste buds, and blood cells) are also temporarily destroyed.

The previously collected stem cells are given back by IV infusion. Stem cells restore blood cells with fewer myeloma cells. Other cells (hair follicles and taste buds) recover.

-

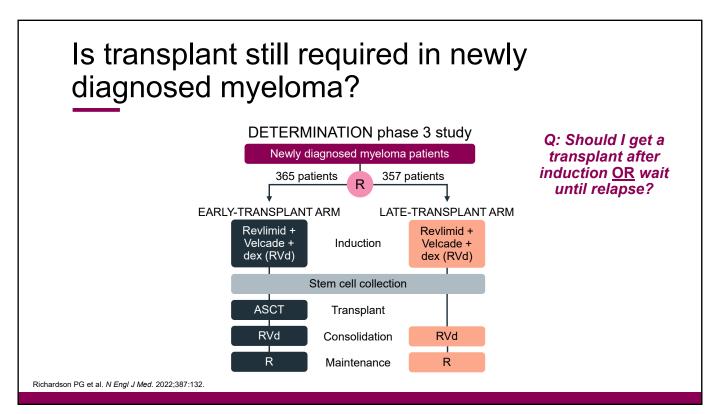
Side Effects of High-Dose Chemotherapy

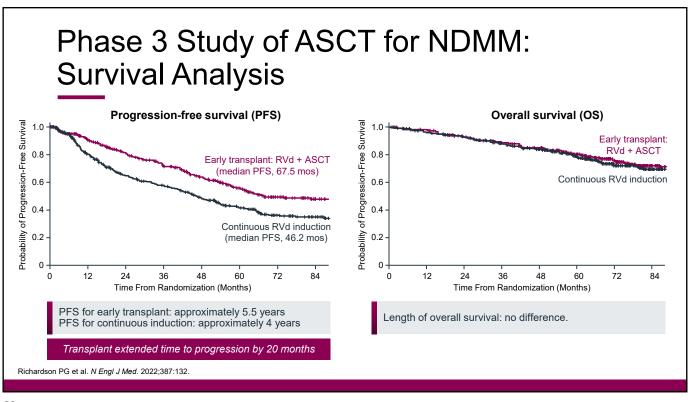
Fatigue

- Expected
- May last 1-3 months

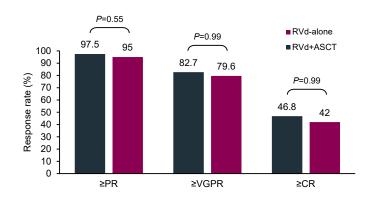
Nausea, vomiting, and diarrhea

- Symptoms much more manageable with newer antiemetics
- Try to prevent nausea
- May include stomach cramping
- Encourage small amounts of food, more often
- Avoid milk, milk products, high-fiber foods


Mucositis


- Pain, sores in mouth; sore throat
- Pain meds, mouth swishes
- Avoid tart, acidic, salty, spicy foods
- Soft food better tolerated

Low blood counts


- Low white blood cells count (risk for infection)
- Hemoglobin drop (fatigue)
- Platelet count drop (bleeding risk)
- Blood transfusion
- Platelet transfusion
- Antibiotics
- White blood cells and platelets recover in 2 weeks

Hair loss

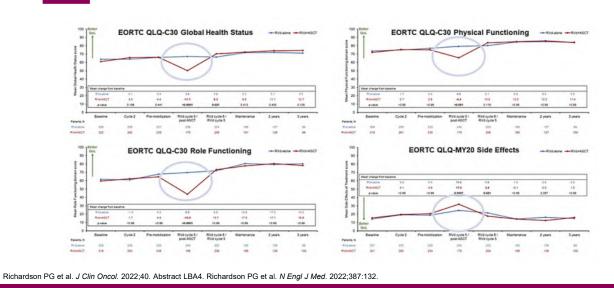
Phase 3 Study of ASCT for NDMM: Best Response to Treatment and Duration of Response

Duration of response	Early transplant (RVd + ASCT)	Late transplant (RVd alone)	<i>P</i> value
Median duration of ≥PR, months	56.4	38.9	0.003
5-year duration of ≥CR, %	60.6	52.9	0.698

Richardson PG et al. N Engl J Med. 2022;387:132

63

Phase 3 Study of ASCT for Newly Diagnosed Multiple Myeloma: Side Effects


Side effect (%)	RVd alone (N=357)	RVd + ASCT (N=365)
Any	78.2	94.2
Fatal side effects	0.3	1.6*
Low blood counts	60.5	89.9
Very low white cell count	42.6	<mark>86.3</mark>
Low platelet count	19.9	<mark>82.7</mark>
Low white cell count	19.6	39.7
Anemia	18.2	29.6
Lymphopenia	9.0	10.1
Infections with low WBC	4.2	9.0
Fever	2.0	5.2
Pneumonia	5.0	9.0
Diarrhea	3.9	4.9
Nausea	0.6	6.6
Mouth sores	0	5.2
Fatigue	2.8	6.0
Numbness, tingling nerve	5.6	7.1

Severe side effects were more common with transplant.

*Includes one death related to ASCT

Richardson PG et al. J Clin Oncol. 2022;40. Abstract LBA4. Richardson PG et al. N Engl J Med. 2022;387:132.

Phase 3 Study of ASCT for NDMM: Quality of Life

65

Phase 3 Study of ASCT for NDMM: Subsequent Therapy and Rate of ASCT in RVD-Alone Arm (Late ASCT)

Subsequent therapy in patients off protocol therapy (%)	RVd alone (N=279) late transplant	RVd + ASCT (N=276) early transplant
Any treatment*	79.6	69.6
Subsequent therapy	n=222	n=192
Any immunomodulatory drug	55.9	58.3
Pomalyst (pomalidomide)	30.2	29.2
Revlimid (lenalidomide)	25.7	29.2
Any proteasome inhibitor	55.9	50.0
Velcade (bortezomib)	27.5	25.5
Kyprolis (carfilzomib)	21.2	16.7
Ixazomib	8.1	7.8
Marizomib	0	0.5
Any monoclonal antibody	16.2	27.6
Darzalex (daratumumab)	11.3	21.4
Empliciti (elotuzumab)	4.5	6.3
Sarclisa (isatuximab)	0.5	0

Only 28.0% of RVdalone (late transplant) patients had received ASCT at any time following end of study treatment

*Including IMiDs, PIs, mAbs, HDACi (panobinostat), ASCT, chemotherapy, RT, steroids, other

Richardson PG et al. J Clin Oncol. 2022;40. Abstract LBA4. Richardson PG et al. N Engl J Med. 2022;387:132.

Early vs Late Transplant Pros and Cons

Pros

Cons

Early ASCT

- · Deeper and more durable response
- · Youngest/healthiest you are going to be
- · Allows for fewer cycles of induction treatment

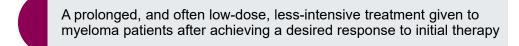
Late ASCT

- PFS may be shorter, but currently appears OS is the same
- · Less side effects without high-dose chemotherapy
- Conserve quality of life in the early part of disease journey

Early ASCT

- · No proven impact on overall survival
- 20% of patients still relapse within 2 years
- More side effects including a small risk of serious life-threatening complications
- · 3 months to full clinical recovery

Late ASCT


- · Need more cycles of induction
- May need next treatment sooner, including (late) transplant
- Not all patients relapsing are able to undergo salvage ASCT

67

Early vs Late ASCT Summary

- ASCT is a standard of care for frontline therapy of myeloma.
- ASCT safety has been established and it induces long PFS.
- Decision of ASCT should be individualized in every patient and deserves a thorough discussion between the patient and provider.
- Emerging data suggests patients with an extremely good response (that is, CR and ideally MRD negative) to induction therapy may have a long PFS. Studies are ongoing to determine whether these patients require ASCT.

What is maintenance therapy?

To prevent disease progression for as long as possible while maintaining favorable quality of life

To deepen responses by reducing minimal residual disease (MRD) or maintaining the response achieved, reducing the risk of relapse, and prolonging survival

69

Successful Maintenance Therapy Must...

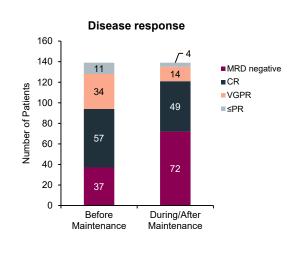
Be convenient

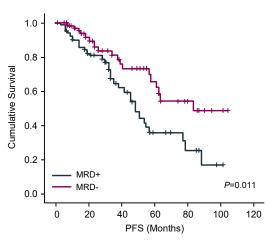
Be safe and well tolerated long term

Not interfere with the use of other future treatments

Maintenance Therapy

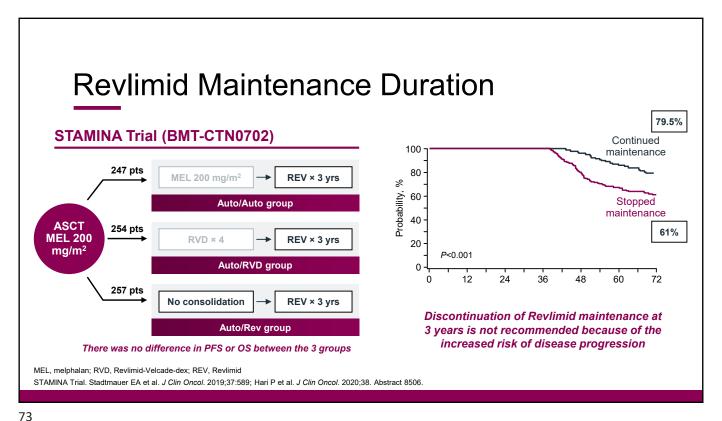
The preferred, FDA-approved maintenance therapy following transplant is Revlimid (lenalidomide).

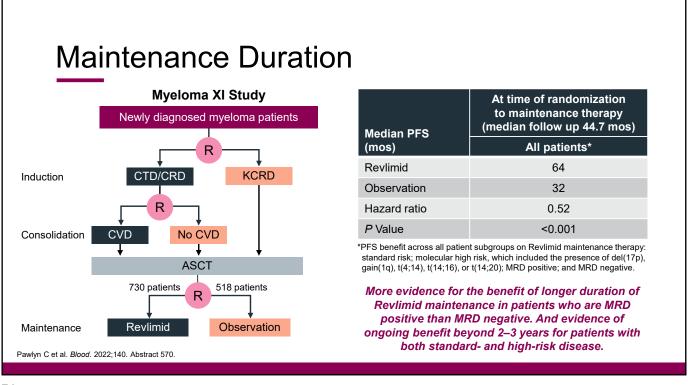

Other maintenance options are Velcade (bortezomib) or Darzalex (daratumumab) (or Ninlaro [ixazomib]*).

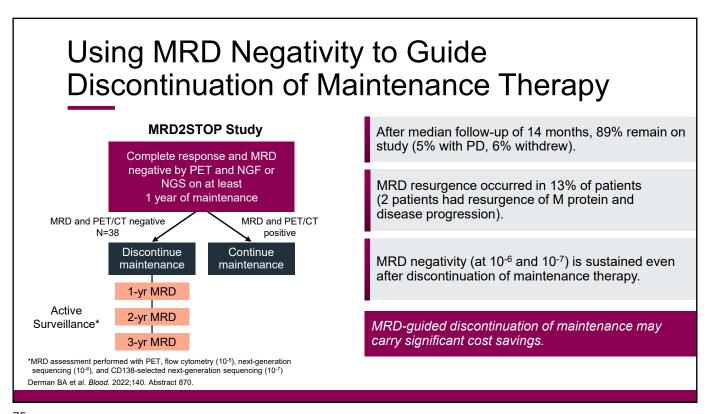

In certain high-risk cases, maintenance therapy may include Revlimid plus Velcade or Kyprolis (carfilzomib), with or without dexamethasone.

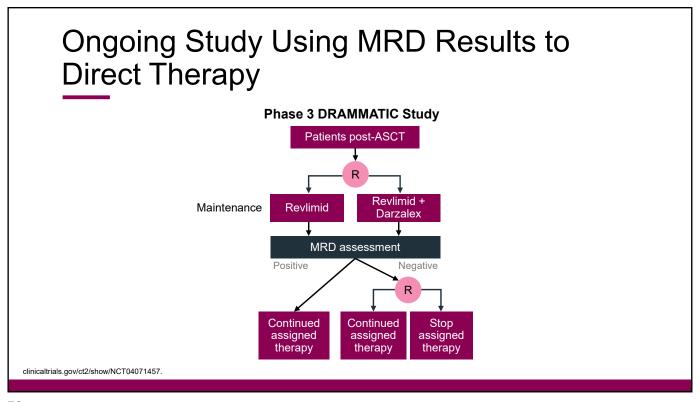
*Results from interim analyses of TOURMALINE MM3 and MM4 trials of ixazomib in the maintenance setting suggest a potential decrease in overall survival.

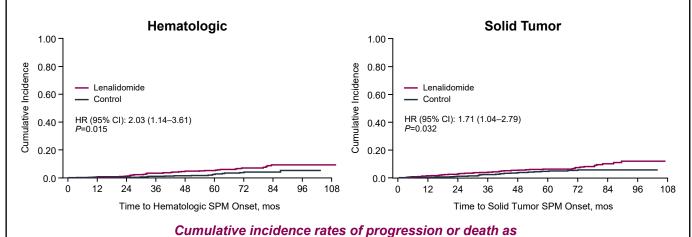
71


Revlimid Maintenance Therapy: Improves Depth of Response




At maximal response during or after maintenance treatment with Revlimid


Alonso R et al. Blood Adv. 2020;4:2163


, ,

Revlimid Maintenance: Cumulative Incidence of Second Primary Malignancies

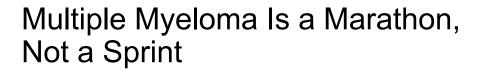
a result of myeloma were all higher with placebo

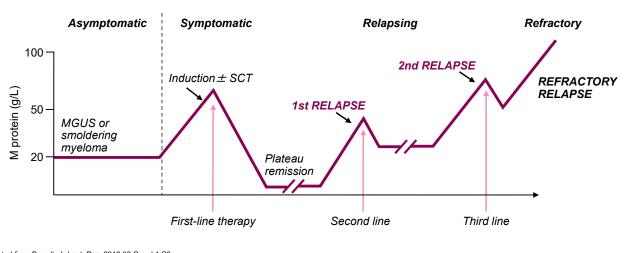
McCarthy PL et al. J Clin Oncol. 2017;35:3279

77

Maintenance Therapy Summary

- The body of evidence from phase 3 trials indicates that maintenance therapy improves PFS and likely OS.
- Most patients should receive maintenance who are thought to be Revlimid responsive and able to tolerate the side effects.
- For patients who are unable to tolerate Revlimid, there are other agents such as Ninlaro, Kyprolis, and Darzalex that are effective but are not yet FDA approved for use as maintenance. Several clinical trials are under way.
- When you are in remission and receiving maintenance (or being observed off treatment), it is important to continue your regular health checks (colonoscopy, breast screening, PSA, mole checks, etc).


Please take a moment to answer two questions about this presentation.


79

Relapsed/Refractory Multiple Myeloma

Omar Nadeem, MD
Dana-Farber Cancer Institute
Boston, Massachusetts

Adapted from Borrello I. Leuk Res. 2012;36 Suppl 1:S3.

81

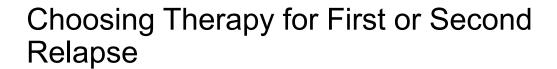
Definitions: What is relapsed/refractory disease and a line of therapy?

- Relapsed: recurrence (reappearance of disease) after a response to therapy
- Refractory: progression despite ongoing therapy
- Progression: increase in M protein/light chain values
- Line of therapy: change in treatment due to either progression of disease or unmanageable side effects
 - Note: initial (or induction) therapy + stem cell transplant + consolidation/maintenance therapy = 1 line of therapy

Biochemical Relapse or Clinical Relapse

Biochemical

 Patients with asymptomatic rise in blood or urine M protein, free light chains, or plasma cells Timing of therapy initiation/ escalation dependent on many factors


Clinical

 Based on direct indicators of increasing disease and/or end-organ dysfunction

Requires immediate initiation/escalation of therapy

83

Choices are broadest and guided by

Disease biology

Nature of relapse

Patient preference

Factors to consider

Prior autologous stem cell transplant

Prior therapies

Aggressiveness of relapse

Comorbidities

Psychosocial issues

Access to care

Options for Relapsed/Refractory Disease Continue to Increase

IMiDs	Proteasome inhibitors	Chemotherapy anthracyclines	Chemotherapy alkylators	Steroids	Other mechanisms of action	Monoclonal and bispecific antibodies	Cellular therapy
Thalomid (thalidomide)	Velcade (bortezomib)	Adriamycin	Cytoxan (cyclophosphamide)	Dexamethasone	XPOVIO (selinexor)	Empliciti (elotuzumab)	Abecma (idecabtagene vicleucel)
Revlimid (lenalidomide)	Kyprolis (carfilzomib)	Doxil (liposomal doxorubicin)	Bendamustine	Prednisone	Venclexta (venetoclax)*	Darzalex (daratumumab)	Carvykti (ciltacabtagene autoleucel)
Pomalyst (pomalidomide)	Ninlaro (ixazomib)		Melphalan			Sarclisa (isatuximab)	
						Tecvayli (teclistamab) [†]	
						Talvey (talquetamab) [†]	
						Elrexfio (elranatamab)†	

*Not yet FDA-approved for patients with multiple myeloma; †Bispecific antibody

New formulations, new dosing, and new combinations, too!

85

Three Drugs Withdrawn From US Market What happened?

All drugs were granted accelerated approval by the FDA, which requires further clinical studies to verify a drug's clinical benefit.

Withdrawn 2021

Withdrawn 2022* Farydak (panobinostat) Blenrep (belantamab mafodotin)

· The required clinical studies were not completed within the FDA-specified time frame

Pepaxto (melflufen)

- The phase 3 OCEAN study compared Pepaxto-dex with Pomalyst-dex in patients with relapsed/refractory myeloma
 - OS with Pepaxto-dex was not improved vs Pomalyst-dex, which didn't pass the regulatory hurdles to confirm the accelerated approval in the U.S.

OS, overall survival; PFS, progression-free survival *Marketing of Blenrep continues in other countries where it has been approved. • Results from the phase 3 DREAMM-3 study that compared Blenrep with Pomalyst-dex in patients with relapsed/refractory myeloma after at least two prior lines of therapy showed that PFS with Blenrep was not improved vs Pomalyst-dex

- The DREAMM clinical study program is continuing as a path forward for approval with two ongoing phase 3 studies (DREAMM-7 and DREAMM-8) testing Blenrep in combinations in an earlier treatment setting for patients who have tried at least one prior line of therapy
 - Results are anticipated in the first half of 2023

Treatment Approach First relapse >1 Relapse Any options for first Triple-class Proteasome relapse not tried refractory inhibitor/ immunomodulatory Refractory to an IMiD but drug/ Refractory to Approved Clinical trials Velcade **and** antibody-based therapies Revlimid sensitive to a PI therapy or Bispecific/ Sd, ide-cel, trispecific antibodies, cilta-cel, DKd, Isa-Kd, DPd, Elo-Pd, DVd, SVd, Ven-Vd (for Tecvayli, cellular therapies (CAR T-cells, NK Talvey, Elrexfio Isa-Pd, or KPd t[11;14])* cells), CELMoDs D, daratumumab (Darzalex); K, carfilzomib (Kyprolis); d, dexamethasone; Isa, isatuximab (Sarclisa); P, pomalidomide (Pomalyst); Elo, elotuzumab (Empliciti); V, bortezomib (Velcade); S, selinexor (Xpovio); Ven, venetoclax (Venclexta); ide-cel, idecabtagene vicleucel (Abecma); cilta-cel, ciltacabtagene autoleucel (Carvykti) *Not yet approved for use in myeloma patients.

87

Currently Available Naked Monoclonal Antibodies for One to Three Prior Lines of Therapy

Drug	Formulation		Approval
Darzalex (daratumumab)		SC once a week for first 8 weeks, then every 2 weeks for 4 months, then monthly	For relapsed/refractory myeloma as a single agent and as a triplet with Revlimid or Velcade or Kyprolis or Pomalyst plus dexamethasone
Empliciti (elotuzumab)		IV once a week for first 8 weeks, then every 2 weeks (or every 4 weeks with pom)	For relapsed/refractory myeloma as a triplet with Revlimid or Pomalyst and dexamethasone
Sarclisa (isatuximab)		IV once a week for first 4 weeks, then every 2 weeks	For relapsed/refractory myeloma as a triplet with Pomalyst or Kyprolis and dexamethasone

IV, intravenous; SC, subcutaneous

89

Currently Available Agents for One to Three Prior Lines of Therapy

Drug	ı	Formulation	Approval
Velcade (bortezomib)		 IV infusion SC injection	For relapsed/refractory myeloma
Kyprolis (carfilzomib)		IV infusion Weekly dosing	 For relapsed/refractory myeloma as a single agent, as a doublet with dexamethasone, and as a triplet with Revlimid or Darzalex plus dexamethasone
Ninlaro (ixazomib)		Once-weekly pill	For relapsed/refractory myeloma as a triplet with Revlimid and dexamethasone
Revlimid (lenalidomide)*	0	Once-daily pill	For relapsed/refractory myeloma in combination with dexamethasone
Pomalyst (pomalidomide)*	Ø	Once-daily pill	For relapsed/refractory myeloma in combination with dexamethasone
XPOVIO (selinexor)	O	Once-weekly pill	For relapsed/refractory myeloma as a triplet with Velcade and dexamethasone

*Black box warnings: embryo-fetal toxicity; hematologic toxicity (Revlimid); venous and arterial thromboembolism

IV, intravenous; SC, subcutaneous

Monoclonal Antibody–Based Regimens for Early Relapse: Darzalex

	POLLUX	CASTOR	CANDOR	APOLLO
Regimens compared	Darzalex-Revlimid-dex (DRd) vs Rd	Darzalex-Velcade-dex (DVd) vs Vd	Darzalex-Kyprolis-dex (DKd) vs Kd	Darzalex-Pomalyst-dex (DPd) vs Pd
Median PFS favored	• DRd: 45 vs 18 months	• DVd: 17 vs 7 months	• DKd: 29 vs 15 months	• DPd: 12 vs 7 months
Clinical considerations	Consider for relapses from non-Revlimid—based maintenance DRd associated with more upper respiratory infections, low blood white blood cell counts, and diarrhea	 Consider for patients who are Revlimid-refractory without significant neuropathy DVd associated with more low blood cell counts 	 Consider for younger, fit patients who are double- refractory to Revlimid and Velcade DKd associated with more respiratory infections 	Consider in patients who are double-refractory to Revlimid and a proteasome inhibitor (Velcade, Kyprolis, Ninlaro) Severe low white blood cell counts

91

Monoclonal Antibody–Based Regimens for Early Relapse: Sarclisa and Empliciti

	ELOQUENT-2	ELOQUENT-3	ICARIA-MM	IKEMA
Regimens compared	Empliciti-Revlimid-dex vs Rd	Empliciti-Pomalyst-dex vs Pd	Sarclisa-Pomalyst-dex vs Pd	Sarclisa-Kyprolis-dex vs Kd
Median PFS favored	Empliciti-Rd: 19 vs 15 months	Empliciti-Pd: 10 vs 5 months	Sarclisa-Pd: 12 vs 7 months	Sarclisa-Kd: 42 vs 21 months
Clinical considerations	Consider for non-Revlimid refractory, frailer patients Empliciti-Rd associated with more infections	Consider for patients refractory to Revlimid and a proteasome inhibitor (Velcade, Kyprolis, Ninlaro)	Consider for patients refractory to Revlimid and a proteasome inhibitor (Velcade, Kyprolis, Ninlaro) Sarclisa-Pd associated with severe low white blood cell counts, more dose reductions, upper respiratory infections, and diarrhea	Consider for patients refractory to Revlimid and Velcade Sarclisa-Kd associated with higher MRD negativity rates Sarclisa-Kd associated with severe respiratory infections

Update From the 2022 American Society of Hematology (ASH) Meeting

Sarclisa After Early or Late Relapse

IKEMA Study

Patients with relapsed/refractory myeloma who received 1–3 prior therapies, no prior therapy with Kyprolis and not refractory to prior anti-CD38 antibody

Data evaluated according to patients who experienced an early* versus late† relapse.

	Early rel	apse	Late relapse	
	Sarclisa -Kd	Kd	Sarclisa -Kd	Kd
Median PFS (months)	24.7	17.2	42.7	21.9
Overall response rate (%)	82	82.6	90.4	86.1
≥VGPR rate (%)	67.2	52.2	76	58.3
MRD negativity rate (%)	24.6	15.2	37.5	16.7
MRD-negative CR rate (%)	18	10.9	30.8	13.9

Regardless of early or late relapse, RRMM patients benefit from the use of isa-Kd with respect to depth of response and prolonged PFS.

*<12 months from initiation of most recent line of therapy (for patients who had ≥2 lines of therapy); <18 months (for patients who had 1 prior line of therapy) and <12 months from ASCT
†≥12 months from initiation of most recent line of therapy (for patients who had ≥2 lines of therapy; ≥18 months for patients who had 1 prior line of therapy)
Facon T et al. Haematologica. 2023;Aug 17 [Epub ahead of print].

93

Proteasome Inhibitor— and Immunomodulatory Drug—Based Regimens for Early Relapse

	OPTIMISMM	ASPIRE	TOURMALINE-MM1	BOSTON
Regimens compared	Velcade-Pomalyst-dex (VPd) vs Vd	Kyprolis-Revlimid-dex (KRd) vs Rd	Ninlaro-Rd (IRd) vs Rd	XPOVIO-Velcade-dex (XPO-Vd) vs Vd
Median PFS favored	VPd: 11 vs 7 months	• KRd: 26 vs 17 months	• IRd: 21 vs 15 months	• XPO-Vd: 14 vs 9 months
Clinical considerations	Consider for relapse on Revlimid VPd associated with more low blood counts, infections, and neuropathy than Pd	KRd associated with more upper respiratory infections and high blood pressure than Rd	 IRd an oral regimen Gastrointestinal toxicities and rashes Lower incidence of peripheral neuropathy 	XPO-Vd associated with nausea, vomiting, weight loss, low platelet counts and fatigue with triplet, but less neuropathy than the Vd

Treatment Approach First relapse >1 Relapse Any options for first Triple-class Proteasome relapse not tried refractory inhibitor/ immunomodulatory Refractory to Refractory to an IMiD but drug/ Approved Clinical trials Velcade and antibody-based therapies Revlimid sensitive to a PI therapy Bispecific/ Sd, ide-cel, trispecific cilta-cel, DKd, Isa-Kd, DPd, Elo-Pd, DVd, SVd, antibodies, Tecvayli, Ven-Vd (for CAR T cells, Talvey, Elrexfio Isa-Pd, or KPd t[11;14])* **CELMoDs** D, daratumumab (Darzalex); K, carfilzomib (Kyprolis); d, dexamethasone; Isa, isatuximab (Sarclisa); P, pomalidomide (Pomalyst); Elo, elotuzumab (Empliciti); V, bortezomib (Velcade); S, selinexor (Xpovio); Ven, venetoclax (Venclexta); ide-cel, idecabtagene vicleucel (Abecma); cilta-cel, ciltacabtagene autoleucel (Carvykti) *Not yet approved for use in myeloma patients.

95

Triple-Class Refractory

 Patients with relapsed or refractory multiple myeloma who have received treatment with—and did not respond satisfactorily to, or progressed while on treatment with—the three main classes of drugs currently used to treat myeloma

Proteasome inhibitors

- Velcade (bortezomib)
- Kyprolis (carfilzomib)
- Ninlaro (ixazomib)

Immunomodulatory drugs

- Revlimid (lenalidomide)
- Pomalyst (pomalidomide)

Anti-CD38 monoclonal antibodies

- Darzalex (daratumumab)
- Sarclisa (isatuximab)

Currently Available Drugs for Triple-Class Refractory Myeloma

Class	Drug	Formulation		Approval		
Nuclear export inhibitor	XPOVIO (selinexor)		Twice-weekly pill	For relapsed/refractory myeloma in combination with dexamethasone (after at least 4 prior therapies and whose disease is refractory to at least 2 PIs, at least 2 IMiDs, and an anti-CD38 mAb		

XPOVIO + dexamethasone in relapsed/refractory myeloma	No. patients with ≥PR (%)¹
Total	32 (26)
Previous therapies to which the disease was refractory, n (%)	
Velcade, Kyprolis, Revlimid, Pomalyst, and Darzalex	21 (25)
Kyprolis, Revlimid, Pomalyst, and Darzalex	26 (26)
Velcade, Kyprolis, Pomalyst, and Darzalex	25 (27)
Kyprolis, Pomalyst, and Darzalex	31 (26)

Additional analyses showed clinical benefit with XPOVIO regardless of patient age and kidney function.^{2,3}

1. STORM Trial. Chari A et al. N Engl J Med. 2019;381:727. 2. Gavriatopoulou M et al. Presented at the 17th International Myeloma Workshop; September 12-15, 2019. Abstract FP-110. 3. Vogl DT et al. Presented at the 17th International Myeloma Workshop; September 12-15, 2019. Abstract FP-111.

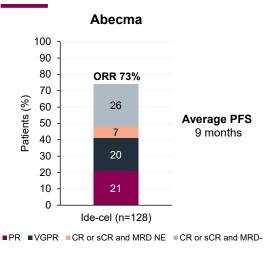
97

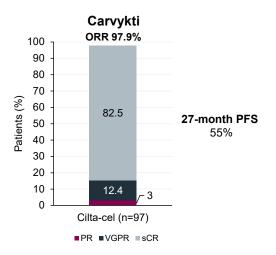
Currently Available Drugs for Triple-Class Refractory Myeloma

Class	Drug	Formulation	
Chimeric antigen receptor (CAR) T cell	Abecma (idecabtagene vicleucel)*		300 to 460 × 10 ⁶ genetically modified autologous CAR T cells in one or more infusion bags
CAR T cell	Carvykti (ciltacabtagene autoleucel)†		0.5 to 1.0 \times 10 6 genetically modified autologous CAR T cells/kg of body weight
Bispecific antibody	Tecvayli (teclistamab)‡		Step-up dosing§ the first week then once weekly thereafter by subcutaneous injection
Bispecific antibody	Talvey (talquetamab)‡		Step-up dosing§ the first week then once weekly thereafter by subcutaneous injection
Bispecific antibody	Elrexfio (elranatamab)‡		Step-up dosing ¹ the first week then once weekly thereafter by subcutaneous injection

IMiD, immunomodulatory agent; PI, proteasome inhibitor; mAb, monoclonal antibody

*Black box warning: cytokine release syndrome; neurologic toxicities; hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS); prolonged cytopenia
†Black box warning: cytokine release syndrome; neurologic toxicities; Parkinsonism and Guillain-Barré syndrome; hemophagocytic lymphohistiocytosis/macrophage activation
syndrome (HLH/MAS); prolonged cytopenia

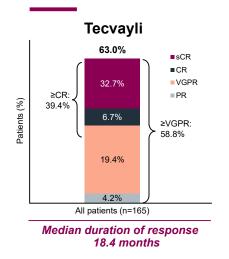

‡Black box warning: cytokine release syndrome; neurologic toxicities

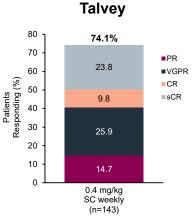

Patients are hospitalized for 48 hours after administration of all step-up doses.

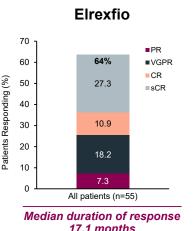
Patients are hospitalized for 48 hours after administration first step-up dose and for 24 hours after second step-up dose.

Abecma, Carvykti, Tecvayli, Talvey, and Elrexfio are available only through a restricted distribution program.

Abecma and Carvykti in Relapsed and Refractory Multiple Myeloma




ORR, overall response rate; PR, partial response; VGPR, very good partial response; CR, complete response; sCR, stringent complete response; MRD, minimal residual disease;


KarMMa Trial. Munshi NC et al. N Engl J Med. 2021;384:705; CARTITUDE-1 Trial. Berdeja JG et al. Lancet. 2021;398:314; Martin T et al. J Clin Oncol. June 4, 2022 [Epub ahead of print].

99

Now Approved: Three Bispecific **Antibodies!**

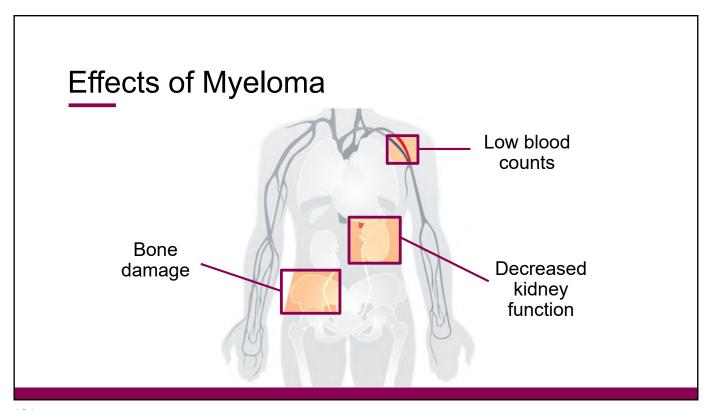
17.1 months

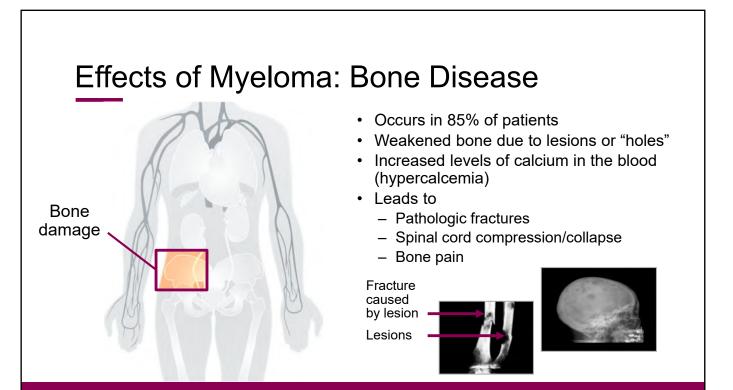
MajesTEC-1 Study. Moreau P et al. N Engl J Med. 2022;387:495. Chari A et al. *N Engl J Med.* 2022;387:2232. Schinke CD et al. *J Clin Oncol.* 2023;41. Abstract 8036.

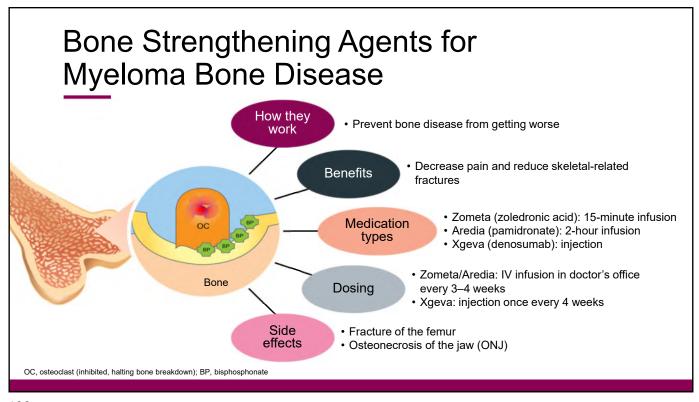
Summary

- We now have many different options for relapsed myeloma depending on patient and myeloma factors at relapse.
- Therapy choices will depend on teamwork between physician, patient, and caregivers and are based on many decision points.
- Combinations of proteasome inhibitors with either immunomodulatory drugs or selinexor improve PFS.
- We have three different monoclonal antibodies that improve PFS when added to other standard therapies without significantly increasing side effects.
- CAR T and bispecific antibodies are very active even in heavily pre-treated patients with unprecedented response rates and durations of response.

101


Please take a moment to answer two questions about this presentation.



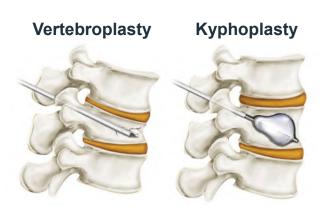

Supportive Care

Sarah L. Patches Baker, FNP-BC, MSN Dana-Farber Cancer Institute Boston, Massachusetts

103

Recommendations for Reducing the Risk of ONJ

- Complete major dental work before beginning treatment for bone disease
- · Practice good oral hygiene
- · Schedule regular dental visits
- Let your dentist know that you are receiving treatment for bone disease
- Keep your doctor informed of dental issues/need for dental work
- Be attentive! ONJ seems to be related to the length of time patients are on treatment for bone disease



ONJ, osteonecrosis of the jaw

107

Orthopedic Procedures to Stabilize the Spine

- Minimally invasive procedures
- Can be performed without hospitalization
- Small incision
- Cement filler stabilizes bone
- Potential for relatively rapid symptom relief (approximately 1 month with kyphoplasty)

Radiation Therapy for Pain Management

109

Pain Management Medications

Acetaminophen (Tylenol)

Will not hurt your kidneys; high dosage can hurt your liver

NSAIDs (nonsteroidal anti-inflammatory drugs)

Prefer to avoid with multiple myeloma due to increased risk of kidney injury

Opioids

Will not hurt kidneys, liver, stomach; potential for constipation, sedation, confusion, dependence, addiction

Corticosteroids (dexamethasone, prednisone)

Will not hurt kidneys; can raise blood sugar; short- and long-term effects

Anti-seizure medications (gabapentin and Lyrica)

Potential for drowsiness and dizziness

Effects of Myeloma: Low Blood Counts

- Symptoms
 - Fatigue; weakness; difficulty breathing; rapid heartbeat; dizziness
- · Other causes
 - Low levels of iron, folate, and vitamin B12

Low red blood cells (anemia)

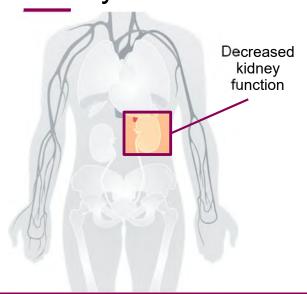
<u>Treatment</u>: Identify and treat causes other than myeloma; supplements; medications to increase number of red blood cells; blood transfusions

- Symptoms
 - Fatigue; frequent infections
- · Other causes
 - Radiotherapy
 - Infection

Low white blood cells (leukopenia)

<u>Treatment</u>: Medications to stimulate production of white blood cells; antibiotics; antifungal medications; infection prevention

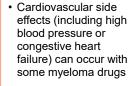
- Symptoms
 - Easy or excessive bruising;
 superficial bleeding into the skin;
 prolonged bleeding from cuts;
 bleeding from the gums or nose;
 blood in urine or stool
- · Other causes
- Viral infection; immune thrombocytopenia; medications


Low platelets (thrombocytopenia)

<u>Treatment</u>: Identify and treat causes other than myeloma; platelet transfusion; hold anticoagulation

111

Effects of Myeloma: Decreased Kidney Function



- Detection
 - Decreased amount of urine
 - Increase in creatinine and other proteins
- Other causes beside myeloma
 - Hypertension
 - Diabetes
 - Some medications
- Treatment
 - Fluids
 - Avoid nonsteroidal anti-inflammatory drugs such as Aleve, Advil/Motrin
 - Plasmapheresis
 - Treat other causes
 - Dialysis (severe)

Main Body Systems Affected by Myeloma Treatment

- Myeloma patients are at increased risk of developing blood clots
- Several myeloma drugs are associated with an increased risk of deep vein thrombosis (DVT)
- Peripheral neuropathy is a condition that affects the nerves, resulting in pain, tingling, burning sensations, and numbness in the hands and feet
- Peripheral neuropathy may be caused by myeloma or its treatments

Central nervous system

Commonly used myeloma drugs may cause a variety of gastrointestinal problems, such as constipation, diarrhea, and nausea/vomiting

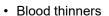
Blood

Cardiovascular

Gastrointestinal

113

Class: Immunomodulatory Drugs Side Effects and Management



- · Potential for blood clots
- · Reduced blood counts
- Rash
- Fatigue
- Muscle pain or muscle cramping
- Diarrhea
- · Small chance of second new cancers when given with melphalan

Pomalyst*

- · Fatigue and weakness
- Reduced blood counts GI effects
- Shortness of breath
- Upper respiratory infection
- · Back pain
- Fever
- · Blood clots
- · Mental fogginess

Management

- · Tonic water/increased fluid intake for cramps
- GI toxicity: avoid dairy; fibers (Metamucil); Imodium; colestipol; cholestyramine; dose reduction
- · Sleep hygiene, regular exercise, dose reduction for fatigue

Important Considerations for Use of Immunomodulatory Drugs

Revlimid*

- Rash
 - Consider antihistamines and L-lysine
- Diarrhea
 - Consider bile acid sequestrants
- Risk of blood clots
- · Risk of second primary malignancies
- · Dose adjustment based on kidney function

Pomalyst*

- · Low blood counts
- · Less rash than Revlimid
- Risk of second primary malignancies
- · Risk of blood clots
- · Dose adjustment for patients on hemodialysis

*Black box warning

115

Class: Proteasome Inhibitors Side Effects and Management

- Velcade PN (numbness, tingling, burning
- · Low platelets
- GI problems: nausea, diarrhea, vomiting, loss of appetite

sensations and/or pain

due to nerve damage)

- Fatique
- Rash

Kyprolis

- Fatigue
- · Anemia
- Nausea
- · Low platelets
- · Shortness of breath
- Diarrhea
- Fever
- Hypertension
- · Cardiac toxicity

Ninlaro

- Diarrhea
- · Constipation
- · Low platelets
- PN
- Nausea
- · Peripheral edema
- Vomiting
- · Back pain

Management

- · PN occurs less often when subcutaneous or once weekly dosing is used for Velcade
- · Other PN prevention
 - Vitamins and other supplements*
 - Certain medications such as gabapentin, pregabalin, duloxetine, opioids
 - Acupuncture
 - Physical therapy
- · Shingles-prevention pills
- · Blood thinners

*Do not take any supplements without consulting with your doctor. PN, peripheral neuropathy; GI, gastrointestinal

Important Considerations for Use of Proteasome Inhibitors

Velcade

- · Risk of peripheral neuropathy (PN; numbness, tingling, burning sensations and/or pain due to nerve damage)
 - Avoid in patients with preexisting PN
 - Reduced with subcutaneous once-weekly dosing
- Increased risk of shingles
 - Use appropriate prophylaxis
- No dose adjustment for kidney issues; adjust for liver issues

Kyprolis

- · Less PN than Velcade
- Increased risk of shingles
 - Use appropriate prophylaxis
- Monitor for heart, lung, and kidney side effects
 - Use with caution in older patients with cardiovascular risk factors
- · High blood pressure
- No dose adjustment for kidney issues; adjust for liver issues

Ninlaro

- · Less PN than Velcade
- Increased risk of shingles
 - Use appropriate prophylaxis
- · Monitor for rashes and gastrointestinal (GI) side effects
 - GI effects occur early
- Needs to be taken at least 1 hour before or 2 hours after a meal

117

Class: Monoclonal Antibodies Side Effects and Management

Empliciti

- · Low blood counts
- · Infusion reactions

Darzalex*/ Sarclisa

- Fatigue
- Upper respiratory tract infection

- anticipation of infusion reactions
- · Post-infusion medications (Darzalex)

*Now approved as subcutaneous injection with fewer side effects.

Important Considerations for Use of Monoclonal Antibodies

Darzalex

- Infusion reactions
 - Less with SC use
- · Risk of shingles
 - Use appropriate vaccination
- Increased risk of hypogammaglobulinemia and upper respiratory infections
 - IVIG support

Empliciti

- · Infusion reactions
- · Risk of shingles
 - Use appropriate vaccination

Sarclisa

- Infusion reactions
- · Risk of shingles
 - Use appropriate vaccination
- Increased risk of hypogammaglobulinemia and upper respiratory infections

SC, subcutaneous; IVIG, intravenous immunoglobulin

119

Side Effects of Steroids (Dexamethasone)

Insomnia

- Healthy sleep habits
- Timing
- Medication to assist with sleeping as needed

Fluid retention

- Monitor for swelling of extremities and "puffy" face
- Monitor weight changes/gain
- · Reduce dose

- Irritable, anxiety, difficulty concentrating
- Severe cases → depression, euphoria

- Dietary modifications (spicy, acidic foods)
- Avoid NSAIDs
- Acid-blocking medications
- Take steroid with food; use enteric-coated aspirin with food

 Monitor glucose and refer/treat as needed

Bispecific Antibody Therapies Are Associated With an Increased Risk of Infections

- Both viral and bacterial
 - Up to ⅓ of patients in clinical trials have serious infections (requiring IV antibodies or hospitalization)
- Increased risk of serious COVID complications despite history of vaccination
 - Antibody levels
 - Immediate treatment once diagnosed nirmatrelvir with ritonavir (Paxlovid)
 - o Start as soon as possible; must begin within 5 days of when symptoms start
 - Oral prophylactic antimicrobials

121

Infection Prevention Ensure IVIG for hypo-Avoid Growth handwashing, crowds factors gammaglobulinemia hygiene **Immunizations** COVID-19 Zoster and PJP Consider (no live vaccines) prevention prophylaxis CMV monitoring IVIG, intravenous immunoglobulin; PJP, Pneumocystis jirovecii pneumonia; CMV, cytomegalovirus

Symptom Management *Constipation*

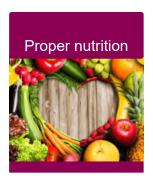
- Stimulant laxatives
 - Mild: senna/sennoside (Senokot)
 - More potent: bisacodyl (Dulcolax)
- Osmotic laxatives
 - Gentle, pulls water into the intestine
- Bulking agents
 - Soluble fiber: psyllium (Metamucil)

123

Symptom Management Acid Reflux/Heartburn

- Our stomachs make a powerful acid to digest food, hydrochloric acid
- Hydrochloric acid can also digest our stomach lining → leads to gastritis and ulcers

A few ways to treat


- 1. Decrease the amount of acid the stomach is making
 - a. Zantac, Pepcid
 - b. Prilosec, Prevacid, Protonix, Nexium
- 2. Absorb excess acid: Tums, Maalox, Mylanta
- 3. Coat stomach: Carafate
- 4. Avoid late night eating

Symptom Management *Insomnia*

- · Causes: anxiety, stress, meds—dexamethasone
- Sleep hygiene
 - Routine: go to bed, wake up at routine times
 - Exercise
 - No TV or screens when trying to sleep
 - Relaxation training; meditation/yoga/Reiki
 - Counseling support
- · Medications: useful but all have drawbacks
 - Lorazepam (Ativan)
 - Zolpidem (Ambien)
 - Diphenhydramine (Benadryl)

125

Daily Living

Taking Care of Yourself

Talk to your provider about side effects... there is usually a way to make treatment tolerable.

Pay attention to your own needs and don't be afraid to ask for help.

Learn more about multiple myeloma.

Look for the positive.

127

Please take a moment to answer two questions about this presentation.

The Impact Of Novel Therapies and the Importance of Sequence in MM, 2023

- 2009
 - · Patient DG, age 62 years
 - · High Risk IgG kappa MM, DSS 3, ISS 2, Elevated LDH
 - 17 del positive, R-ISS 3, 13 del positive (by FISH)
 - PMH HTN, requiring triple therapy
 - RD + Zoledronic acid => RVD (VGPR) Well tolerated, minimal PN (G1)
- 2010: ASCT (CY HDM) (CR)
 - · R/Z maintenance
- 2011: PD RVD (PR)
- 2012: PD Pom VD (VGPR)
- 2013: PD (aggressive relapse with extra-medullary disease)
- DARA [501] 16 mg/kg (CR; MRD -) to present (> 10 years) with multiple future options when needed....now aged 75 years and is a grandmother X4.
 "Best I have ever felt since prior to diagnosis, and even despite dealing with the COVID pandemic"

Clinic visits @ DFCI 2021-2023

Monotherapy in Multiple Myeloma

H. M. Lokhorst, T. Plesner, J.P. Laubach, H. Nahi, P. Gimsing, M. Hansson, M.C. Minnema, U. Lassen, J. Krejcik, A. Palumbo, N.W.C.J. van de Donk, T. Ahmadi, I. Khan, C.M. Uhlar, J. Wang, A.K. Sasser, N. Losic, S. Lisby, L. Bas N. Brun. and P.G. Richardson

NEJM, 2015

129

Immunotherapy

Shonali Midha, MDDana-Farber Cancer Institute
Boston, Massachusetts

Why do multiple myeloma cells still grow and survive if the immune system is ready to attack?

Myeloma cells arise from normal plasma cells and therefore they may not look like invaders.

Myeloma cells can fool the immune system by disguising themselves in a way that lets them go unnoticed by immune cells.

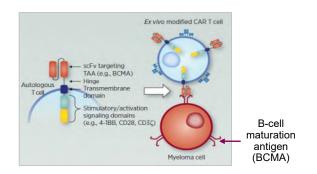
They can actively resist the immune system; myeloma cells are able to produce substances that inactivate existing immune cells.

Immunotherapy is a therapeutic strategy that is specifically designed to overcome these defensive tactics used by myeloma cells!

131

Types of Immunotherapy Directly targeting Overcoming myeloma cell immune **Immunomodulatory Antibodies** markers suppression drugs **CAR T cells Vaccines** Boosting Activating myelomamyeloma-specific fighting T cells immunity Rodriguez-Otero P et al. Haematologica. 2017;102:423.

CAR T-Cell Therapy


Genetically modified T cells are designed to recognize specific proteins on myeloma cells.

CAR T cells are activated once in contact with the myeloma cell and can destroy it.

CAR T cells can persist for long periods in the body.

CAR T cells are created from a patient's own blood cells, but the technology is evolving to develop "off-the-shelf" varieties.

CAR, chimeric antigen receptor; BCMA, B-cell maturation antigen Cohen A et al. Clin Cancer Res. 2020;26:1541.

Two CAR T-cell therapies approved!

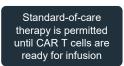
- · Abecma (ide-cel)
- · Carvykti (cilta-cel)

133

CAR T-Cell Therapy Patient Journey

Apheresis

1 day



(Manufacturing) Patient returns home

4-6 weeks

Lymphodepletion (chemotherapy)

3 days*

Fludara and Cytoxan are used to create "immunologic space" to CAR T cells to expand

Infusion

2 weeks

Follow up

Within 2 weeks

*Patient must be recovered from any toxicity incurred from bridging therapy before starting lymphodepletion

CAR T-Cell Therapy Insights

Prognostic value of depth of response following CAR T-cell therapy¹

- Achieving sustained, undetectable MRD after Abecma is associated with prolonged PFS
- Only MRD status—not complete response (CR) status—predicted early relapse 1 month after Abecma
- Both MRD and CR status at 12 months were required to identify patients with longer PFS

Real-world outcome with Abecma after BCMA-targeted therapy²

- 11 US academic centers conducted a retrospective analysis on the realworld outcome for patients treated with Abecma after previously receiving BCMA-targeted therapy
- Prior BCMA-targeted treatment is associated with inferior PFS and a trend toward inferior outcomes for patients receiving Abecma within 6 months of having received prior BCMA-targeted therapy
- Warrants further investigation into the optimal timing of Abecma infusion

Outcomes and options following relapse from CAR T³

- A retrospective analysis of 78 patients with RRMM who received BCMAtargeted CAR T-cell therapy
- Patients who had previously been refractory to a specific drug class re-responded after CAR T relapse
- Median OS after progressing on CAR T was 14.8 months and 18 months for patients who received subsequent BCMA CAR T or BCMA bispecific antibodies within 6 months of progressing on CAR T

Assessment of cytopenias from CAR T⁴

- Retrospective review of data from 90 patients 4 months after CAR T-cell infusion
- Patients with poor hematologic recovery (28%) compared with adequate recovery (72%) were older, more heavily pretreated, and more likely to have received ≥1 ASCT

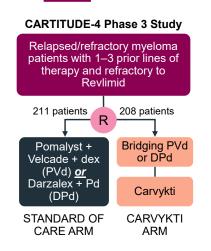
Abecma in earlier lines of treatment⁵

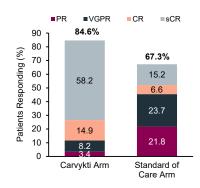
- KarMMa-2 phase 2 multicenter study of Abecma in 37 patients with RRMM with high-risk disease*
- Results show a benefit to Abecma in earlier line of treatment
- *Early relapse after frontline therapy or inadequate response after frontline ASCT
- 1. Paiva B et al. Blood. 2022;140. Abstract 868. 2. Ferreri CJ et al. Blood. 2022;140. Abstract 766. 3. Reyes KR et al. Blood. 2022;140. Abstract 250.
- 4. Thibaud S et al. *Blood*. 2022;140. Abstract 249. **5.** Usmani S et al. *Blood*. 2022;140. Abstract 361.

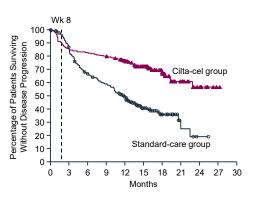
135

Abecma or Standard Regimens in Relapsed and Refractory Multiple Myeloma

Progression-free survival Probability of Progression-Free Survival 0.9 8.0 0.73 0.7 0.6 0.55 Median PFS. 0.5 13.3 months 0.4 0.30 Ide-cel 0.3 0.2 Median PFS, 4.4 months 0.1 Standard regimen 0.0 15 18 21 24 Months Since Randomization P<0.001

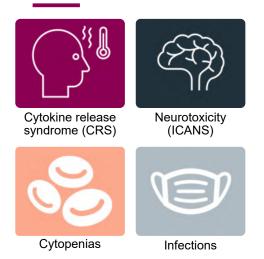

Rodriguez-Otero P et al. N Engl J Med. 2023 Feb 10. Online ahead of print.


Treatment response


	Abecma (n=254)	Standard regimen (n=132)
Overall response (%)*	71	42
Complete response (%)	39	5
Best overall response (%)		
Stringent complete response	35	5
Complete response	3	1
Very good partial response	22	10
Partial response	11	27
Minimal response	2	7
Stable disease	12	36
Progressive disease	9	8
Median duration of response (mos)	14.8	9.7

*P<0.001

Carvykti in Earlier Use of Relapsed/Refractory Multiple Myeloma



Data from this trial was recently used to submit a Biologics License Application to the US Food and Drug Administration for the <u>earlier</u> treatment of patients with relapsed or refractory multiple myeloma.

San-Miguel J et al. N Engl J Med. June 5, 2023 [Epub ahead of print].

137

CAR T: Expected Toxicities

	CRS	ICANS
Onset	1–9 days after CAR T-cell infusion	2–9 days after CAR T-cell infusion
Duration	5–11 days	3–17 days
Symptoms	 Fever Difficulty breathing Dizziness Nausea Headache Rapid heartbeat Low blood pressure 	Headache Confusion Language disturbance Seizures Delirium Cerebral edema
Management	Actemra (tocilizumab) Corticosteroids Supportive care	Antiseizure medications Corticosteroids

*Based on the ASTCT consensus; †Based on vasopressor; ‡For adults and children >12 years; §For children ≤12 years; ¶Only when concurrent with CRS

ICANS, immune effector cell-associated neurotoxicity syndrome

Xiao X et al. J Exp Clin Cancer Res. 2021;40(1);367; Lee DW et al. Biol Blood Marrow Transplant. 2019;25:625; Shah N et al. J Immunother Cancer. 2020;8:e000734.

Transplant vs CAR T Cells

Cellular therapies	CAR T-cell therapy	Autologous stem cell transplantation
Patient's cells collected	Yes	Yes
Types of cells collected	T cells*	Stem cells†
Collected cells are genetically engineered in a lab	Yes	No
Patient given chemotherapy before cells are infused back into patient	Yes, lymphodepleting therapy	Yes, melphalan
When in the course of myeloma is this usually done?	After multiple relapses	As part of initial treatment
Side effects of treatment	Cytokine release syndrome; confusion	Fatigue, nausea, diarrhea

^{*}An immune cell that is the "business end" of the system, in charge of maintaining order and removing cells. †Precursor cells that give rise to many types of blood cells. We actually collect CD34+ve cells.

139

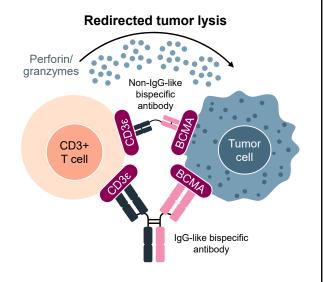
What's next for CAR T-cell therapy?

	BMS-986354 ^[1]	FasT CAR-T GC012F ^[2]	BMS-986393 ^[3]	ALLO-715 ^[4]	PHE885 ^[5]
CAR T Features	Targets BCMA Shortened manufacturing time	Targets BCMA <u>and</u> CD19 Manufacturing process that takes as little as 24 hours	Targets GPRC5D	An allogeneic anti-BCMA CAR T-cell product	Targets BCMA Less than 2 days manufacturing time
Study Details	Phase 1 trial Spatients with RRMM Median of 5 prior lines of therapy	Phase 1 trial 13 newly diagnosed high-risk myeloma patients ineligible for stem cell transplant	Phase 1 trial 17 heavily pretreated patients with RRMM, including those who relapsed from BCMA CAR-T therapy	Phase 1 trial 53 patients with RRMM Median of 5 prior lines of therapy	Phase 1 trial 46 patients with RRMM Median of 4 prior lines of therapy
Study Results					
Responses	Overall response rate was 98.1% with 57.4% achieving ≥VGPR (29.6% ≥CR)	100% of patients achieved 2VGPR (69% sCR) All patients achieved MRD negativity (by EuroFlow)	86% evaluable patients responded, including 7 of 11 patients treated with prior BMCA- targeted treatment	Overall response rate was between 64% and 80% in the most active cell doses studied	100% of patients responded (at the million cell–dose level)
Side effects	CRS occurred in 80% of patients with only 1 patient experiencing ≥G3. Neurotoxicity occurred in 10.9% of patients (one grade 4)	CRS observed in 23% of patients (all low grade)	Neutropenia and thrombocytopenia most frequent grade 3/4 adverse events Additional adverse events include skin- and nail-related; dysgeusia and/or dysphagia; CRS; ICANS	CRS occurred in 52% of patients; neurotoxicity in 11% Infections occurred in 56% of patients (29% ≥G3)	CRS occurred in 96% of patients (11% experiencing G3) ICANS in 22% (7% with G3)

BCMA, B-cell maturation antigen; RRMM, relapsed/refractory multiple myeloma; CR, complete response; CRS, cytokine release syndrome; G, grade; VGPR, very good partial response; ICANS, Immune effector cell-associated neurotoxicity syndrome

^{1.} Costa LJM et al. *Blood*. 2022;140. Abstract 566. **2.** Du J et al. *Blood*. 2022;140. Abstract 366. **3.** Bal S et al. *Blood*. 2022;140. Abstract 364. Mailankody S et al. N Engl J Med. 2022;387:1196. **4.** Mailankody S et al. Presented at ASH 2022. Abstract 651. Mailankody S et al. Nat Med. 2023;29:422. **5.** Sperling AS et al. J Clin Oncol. 2023;41. Abstract 8004.

Bispecific Antibodies


Bispecific antibodies are also referred to as dual-specific antibodies, bifunctional antibodies, or *T-cell engaging antibodies*.

Bispecific antibodies can target two cell surface molecules at the same time (one on the myeloma cell and one on a T cell).

Many different bispecific antibodies are in clinical development; three approved for use in myeloma!

Availability is off-the-shelf, allowing for immediate treatment.

Cohen A et al. *Clin Cancer Res.* 2020;26:1541. Singh A et al. *Br J Cancer*. 2021;124:1037.

141

Bispecific Antibodies Under Investigation

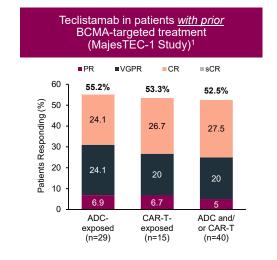
Bispecific antibody	Target (on MM cell × T cell)	Status	
Tecvayli (teclistamab)	BCMA × CD3	Approved for use in myeloma patients	
Elranatamab	BCMA × CD3	Approved for use in myeloma patients	
Linvoseltamab	BCMA × CD3	Clinical studies	
Alnuctamab	BCMA × CD3	Clinical studies	
ABBV-383	BCMA × CD3	Clinical studies	
Talquetamab	GPRC5D × CD3	Approved for use in myeloma patients	
Forimtamig (RG6234)	GPRC5D × CD3	Clinical studies	
Cevostamab	FcRH5 × CD3	Clinical studies	

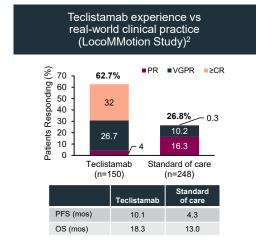
BCMA

- Highly expressed only on the surface of plasma cells
- Myeloma patients have significantly higher serum BCMA levels than healthy individuals

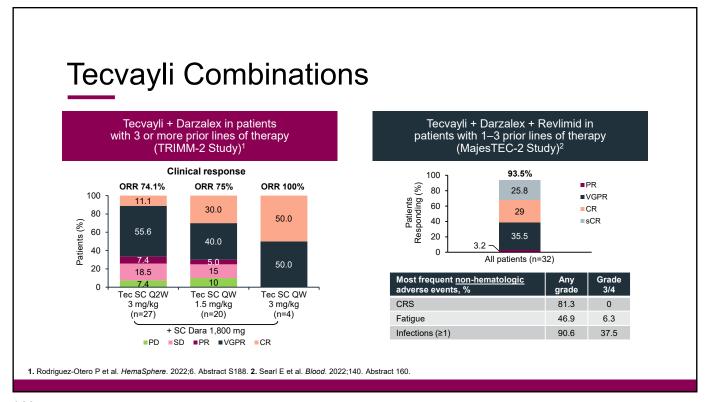
GPRC5D

- Highly expressed on myeloma cells in the bone marrow
- · Lowly expressed on hair follicles but not on other healthy cells
- · Expression on myeloma cells is independent of BCMA

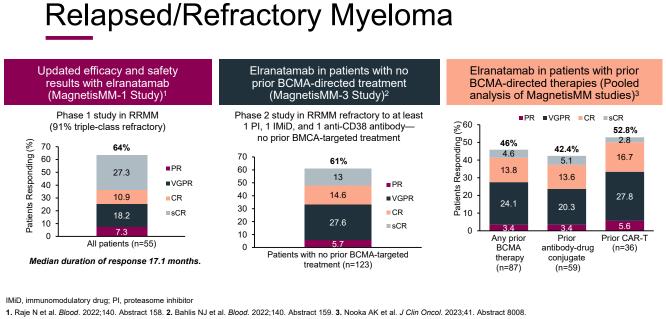

FcRH5


• Selectively expressed on B cells and plasma cells

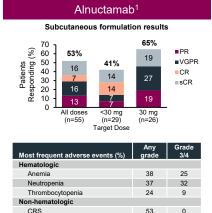
CD3: a T-cell receptor


GPRC5D, G protein-coupled receptor family C group 5 member D

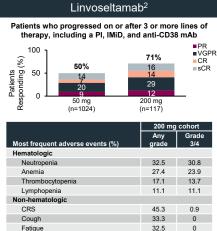
Additional Studies of Tecvayli in Patients With Relapsed/Refractory Myeloma

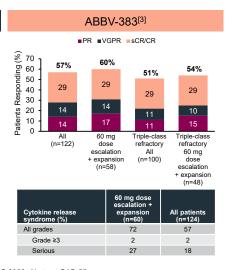


1. Touzeau C et al. J Clin Oncol. 2022;40. Abstract 8013. 2. van de Donk NWCJ et al. J Clin Oncol. 2022;40. Abstract 8016.



Elranatamab in Patients With Relapsed/Refractory Myeloma


145


Additional BCMA-Targeted Bispecific Antibodies

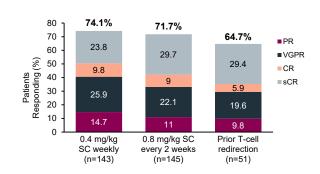
34

9

1. Wong SW et al. Blood. 2022;140. Abstract 162. 2. Lee HC et al. J Clin Oncol. 2023;41. Abstract 8006. 3. Voorhees P et al. IMS 2022. Abstract OAB-55

Infections

ICANS


Non-BCMA—Targeted Bispecific Antibodies

147

Talvey in Patients With Relapsed/Refractory Multiple Myeloma

Phase 1/2 study (MonumenTAL-1) in RRMM

288 patients—with or without prior T cell–redirecting therapies—received treatment with Talvey at 2 different doses (0.4 mg/kg every week and 0.8 mg/kg every other week) subcutaneously.

Now approved for patients with relapsed or refractory multiple myeloma who have received at least four prior lines of therapy, including a PI, an IMiD, and an anti-CD38 monoclonal antibody!

IMiD, immunomodulatory drug; PI, proteasome inhibitor Schinke CD et al. *J Clin Oncol*. 2023;41. Abstract 8036.

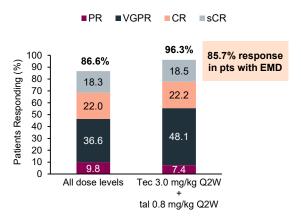
Talvey in Patients With Relapsed/Refractory Myeloma

	0.4 mg/kg		0.8 mg/kg	
Most frequent adverse events, %	Any grade	Grade 3/4	Any grade	Grade 3/4
Hematologic				
Anemia	44.8	31.5	45.5	27.6
Neutropenia	35.0	30.8	28.3	22.1
Thrombocytopenia	27.3	20.3	29.7	18.6
Non-hematologic				
CRS	79.0	2.1	74.5	0.7
Taste disorder (dysgeusia)*	72.0	NA	71.0	NA
Infections	58.7	19.6	66.2	14.5
Skin related*	55.9	0	73.1	0.7
Nail related	54.5	0	53.8	0
Weight decreased	41.3	2.1	41.4	5.5
Fatigue	24.5	3.5	27.6	0.7

^{*}Taste- and skin-related side effects led to discontinuations in 5 patients

Schinke CD et al. J Clin Oncol. 2023;41. Abstract 8036.

149

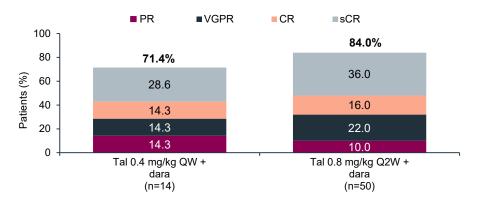

GPRC5D-Associated Side Effects

Affected area	Symptoms and effects	Management
Skin	Rash, skin peeling	Relatively benign, not painful, self-limiting, and manageable with emollients
Nails	Nail thinning and loss	Mostly aesthetic but take time to resolve
Oral	Difficulty swallowing, dry mouth, taste changes	Can lead to weight loss; have longer duration and can affect quality of life. Most successfully managed with dose modification. Supportive measures may be used (eg, NaCl mouth rinse, artificial saliva spray, diet modification)

Myeloma patients respond well to treatment, and GPRC5D-associated side effects improve over time, becoming more tolerable; notable reduction in side effects is seen with dose modification

Catamero D et al. Clin Lymphoma Myeloma Leuk. 2023;23. Abstract NSP-03.

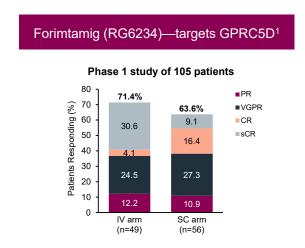
Talvey Combinations: Tecvayli + Talvey in Patients With Relapsed/Refractory MM

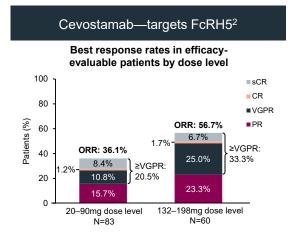

	All dose levels (n=93)		Tec + Tal at RP2R dose levels (n=34)	
Most frequent adverse events (%)	Any grade	Grade 3/4	Any grade	Grade 3/4
Hematologic				
Neutropenia	65.6	61.3	55.9	44.1
Anemia	50.5	34.4	32.4	23.5
Thrombocytopenia	43.0	29.0	32.4	23.5
Non-hematologic				
CRS	76.3	3.2	73.5	0
Dysgeusia	61.3	-	47.1	-
Pyrexia	50.5	2.2	38.2	2.9
Skin toxicity	53.8	0	52.9	0
Nail disorders	46.2	0	41.2	0

Progression-free survival, 20.9 months; duration of response, not yet evaluable.

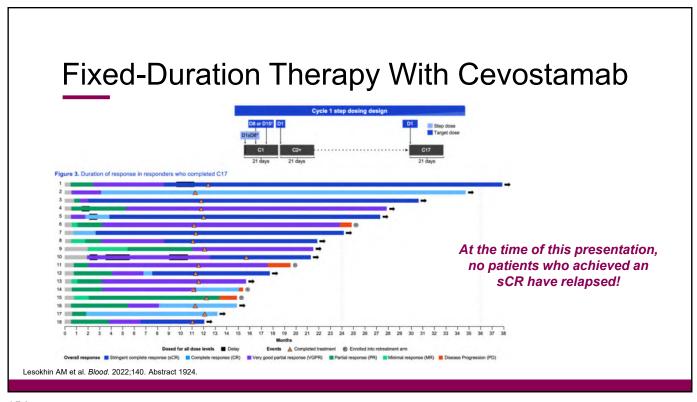
PR, partial response; VGPR, very good partial response; CR, complete response; sCR, stringent complete response; CRS, cytokine release syndrome; EMD, extramedullary disease RedirecTT-1 Study. Cohen YC et al. J Clin Oncol. 2023;41. Abstract 8002.

151

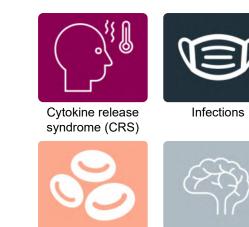

Talvey Combinations; Talvey + Darzalex in Patients With 3 or More Prior Lines of Therapy



Progression-free survival, 19.4 months; duration of response, 20.3 months.


PR, partial response; VGPR, very good partial response; CR, complete response; sCR, stringent complete response TRIMM-2 Study. Dholaria BR et al. *J Clin Oncol.* 2023;41. Abstract 8003.

Forimtamig and Cevostamab in Patients With Relapsed/Refractory Multiple Myeloma



1. Carlo-Stella CA et al. Blood. 2022;140. Abstract 161. 2. Trudel S et al. Blood; 138. Abstract 158.

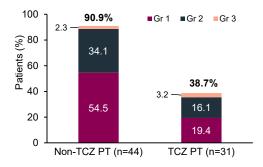
Expected Toxicities With T Cell–Activating Therapies (CAR T and Bispecific Antibodies)

Cytokeratin changes/rash Dysgeusia

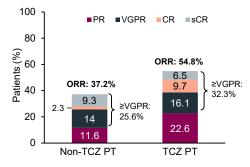
Off-target effects (with GPRC5D-targeted agents)

ICANS, immune effector cell-associated neurotoxicity syndrome

Cytopenias


155

Pretreatment With Tocilizumab Reduces Incidence and Severity of Cytokine Release Syndrome With Cevostamab


Neurotoxicity

(ICANS)

Phase 1 study evaluating the use of tocilizumab (an IL-6 antibody) prior to the first dose of cevostamab.

Significantly lower rate of CRS in the TCZ PT group

TCZ PT had no negative impact on response rates

Trudel S et al. Blood; 2022;140. Abstract 567

Bispecific Antibodies Are Associated With an Increased Risk of Infections

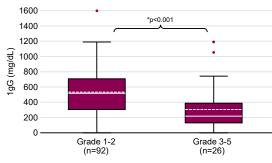
A pooled analysis of 1,185 RRMM patients in 11 different clinical trials treated with single agent bispecific antibodies (with no prior use of different bispecifics)

Majority of patients (72%) treated with BCMA-targeted bispecific antibodies

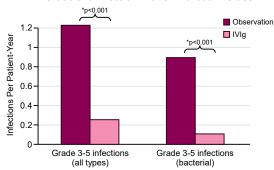
	Patients (%)		
Adverse event	All grades	Grade 3/4	
Neutropenia	38.6	34.8	
Infections	50	24.5	
CRS	59.6	NR	
Pneumonia	NR	10	
COVID-19	NR	11.4	

Hypogammaglobulinemia occurred in 75.3% of patients with intravenous immunoglobulin used in 48%.

Death was reported in 110 patients of which 28 (25.5%) were reported to be secondary to infections.

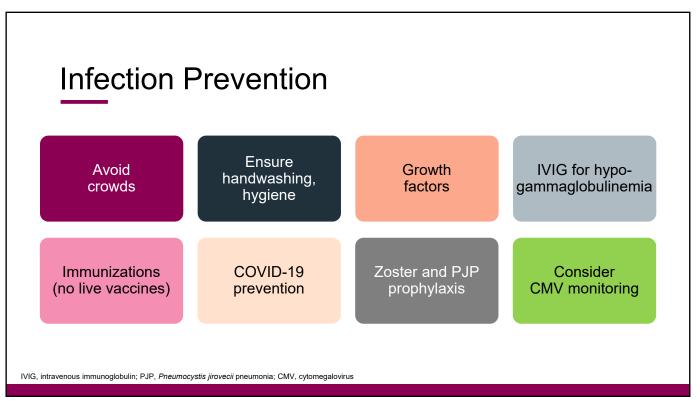

Certain precautions should be used when using bispecific antibodies to mitigate the risk and/or identify and treat infections promptly.

NR, not reported Lancman G et al. *Blood Adv*. March 1, 2023 [Online ahead of print]


157

IVIG Infusion Reduces Risk of High-Grade Infections

IgG levels at time of infection and severity



Grade 3-5 infection with or without IVIG use

- Serious infections are very common, including opportunistic infections (eg, CMV, PCP)
- · Infection risk continues to accumulate over time, even in deep remissions
- · Profound hypogammaglobulinemia/agammaglobulinemia is universal in responders
- · IVIG appears to be largely protective for severe infections

Lancman G et al. Blood Cancer Discov. 2023;28:OF1

Similarities and Differences Between CAR T-Cell Therapy and Bispecific Antibodies

	CAR T-cell therapy	Bispecific antibody
Approved product	Abecma, Carvykti	Tecvayli
Efficacy	++++	+++
How given	One-and-done	IV or SC, weekly to every 3 weeks until progression
Where given	Academic medical centers	Academic medical centers
Notable adverse events	CRS and neurotoxicity	CRS and neurotoxicity
Cytokine release syndrome	+++	++
Neurotoxicity	++	+
Availability	Wait time for manufacturing	Off-the-shelf, close monitoring for CRS and neurotoxicity
Advantages	 Personalized Targeted immunocytotoxicity Single infusion ("one and done") Potentially persistent 	 Off the shelf Targeted immunocytotoxicity No lymphodepletion Minimal steroids
Disadvantages	FACT-accredited center required (hospitalization likely required) CRS and neurotoxicity; requires ICU and neurology services Dependent on T-cell health (manufacturing failures) Requires significant social support; caregiver required \$\$\$\$	Initial hospitalization required CRS and neurotoxicity possible Dependent on T-cell health (T-cell exhaustion) Requires continuous administration \$\$\$

Key Points

- CAR T and bispecific antibodies are very active even in heavily pretreated patients.
- Side effects of CAR T cells and bispecific antibodies include cytokine release syndrome, confusion, and low blood counts, all of which are treatable.
- Abecma and Carvykti are only the first-generation CAR T cells and target the same protein; different CAR Ts and different targets are on the way.
- Bispecific antibodies represent an "off-the-shelf" immunotherapy; Tecvayli was approved in October 2022.
- Several additional bispecific antibodies are under clinical evaluation.

161

Please take a moment to answer two questions about this presentation.

Multiple Myeloma Precursor Conditions

Omar Nadeem, MD
Dana-Farber Cancer Institute
Boston, Massachusetts

163

The Multiple Myeloma Disease Spectrum

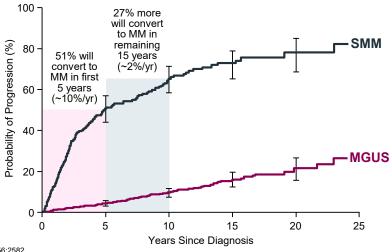
Almost all patients diagnosed with multiple myeloma have had a preceding phase of disease that is characterized by changes in the bone marrow.

Monoclonal gammopathy of undetermined significance (MGUS)

Smoldering multiple myeloma (SMM) High-risk SMM

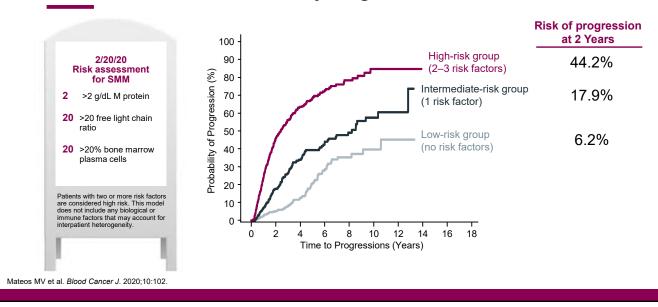
Multiple myeloma

Blood, Urine, Bone Marrow, and Imaging Tests Used to Identify MGUS, SMM, or Active Multiple Myeloma


	MGUS	SMM	Active MM
M protein	<3 g/dL in blood	≥3 g/dL in blood <u>or</u> ≥500 mg/24 hrs in urine	≥3 g/dL in blood <u>or</u> ≥500 mg/24 hrs in urine
Plasma cells in bone marrow	<10%	≥10%–60%	≥60%
Clinical features	No myeloma- defining events*	No myeloma- defining events*	≥1 myeloma-defining event*, including either: • ≥1 CRAB feature or • ≥1 SLiM feature

^{*}CRAB, calcium elevation, renal insufficiency, anemia, bone disease; SLiM, >60% plasma cells in bone marrow, free light chain involved to uninvolved ratio >100, >1 focal lesion on MRI

Rajkumar SV et al. Lancet Oncol. 2014;15:e538.


165

Risk of Progression to Myeloma From a Precursor Condition

Kyle RA et al. *N Engl J Med*. 2007;356:2582. Greipp PR et al. *J Clin Oncol*. 2005;23:3412.

Risk Assessment in Smoldering Myeloma: 2/20/20 Model to Identify High-Risk SMM Patients

167

Personalized Progression Prediction in Patients With MGUS or SMM (PANGEA)

A new model to assess risk of progression using accessible, time-varying biomarkers

Biomarkers tested include monoclonal protein concentration, free light chain ratio, age, creatinine concentration, and bone marrow plasma cell percentage + hemoglobin trajectories.

Improves prediction of progression from SMM to multiple myeloma compared with the 20/2/20 model

Cowan A et al. Lancet Haematol. 2023;10:e203

Can we identify everyone who has a precursor condition?

169

Studies Focusing on Myeloma Precursor Conditions

Large ongoing precursor studies

Iceland

Focus: role of population screening

United States and Canada

Focus: racial disparities and familial aggregation

United States

TRANSFORMM study

Focus: genomic markers of progression

Prevalence of MGUS and SMM

iStopMM Study

148,704 individuals 40 years of age or older in Iceland enrolled

75,422 screened for M protein and abnormal free light chain

3,358 individuals with MGUS

Key Observations

SMM¹

- SMM prevalence is 0.53% in individuals 40 years or older
- One third of SMM patients have an intermediate or high risk* of progression to myeloma

MGUS²⁻⁴

- 3.9% of individuals screened have MGUS (5% in individuals over 50 years of age)
- MGUS subtypes: 57% IgG; 21% IgM; 12% IgA. IgA prevalence rises slowly with age and plateaus after age 70.
- Risk categories*: 43% low; 40.4% low-intermediate; 16.3% high-intermediate; and 0.3% high.
- No evidence of MGUS progression following SARS-CoV-2 vaccination
- A prediction model created to identify patients with MGUS that have ≥10% bone marrow plasma cells to help clinicians determine which of their MGUS patients may defer a bone marrow biopsy.

*Based on the 2/20/20 risk stratification model where three risk factors are associated with progression to active myeloma: (1) M protein levels, (2) free light chain ratio, and (3) the number of plasma cells in the bone marrow.

1. Thorsteinsdottir S et al. Blood. 2021;138. Abstract 151. 2. Love TJ et al. Blood. 2022;140. Abstract 103. 3. Palmason R et al. Blood. 2022;140. Abstract 105. 4. Eythorsson E et al. Blood. 2022;140. Abstract 107.

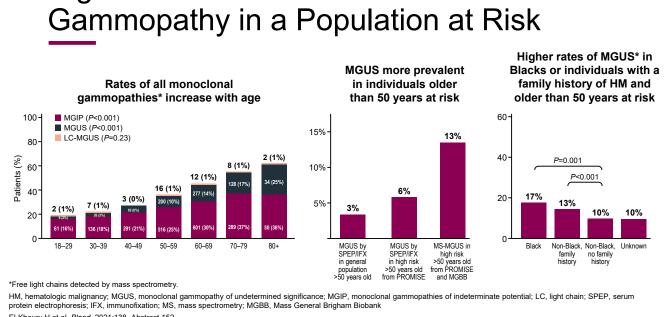
171

High Prevalence of Monoclonal Gammopathy in a Population at Risk

The PROMISE Study 7,622 individuals screened* 6.305 patients 1,317 patients No high-risk features High-risk features for myeloma for myeloma Non-Blacks Negative Unknown with family family Blacks family history history (n=2,439)history of HM of HM of HM (n=631)(n=686)(n=3,866)

*The PROMISE study and Mass General Brigham Biobank—detected by mass spectrometry. HM, hematologic malignancy

El-Khoury H et al. Blood. 2021;138. Abstract 152

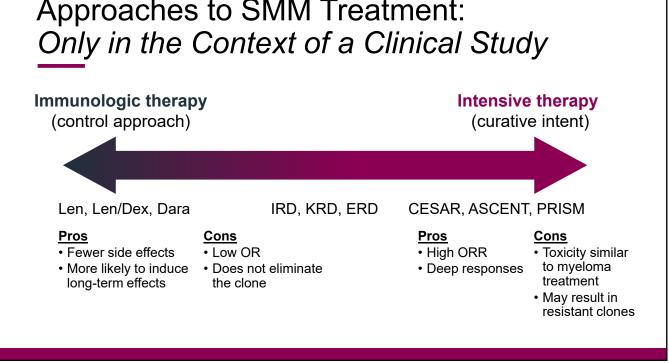

MGUS estimated in 13% to 17% of a high-risk screened population (rates increase with age).

Higher detection rates of free light chains by mass spectrometry than conventional methods.

Older adults who are Black or have a first-degree relative with a HM have an increased prevalence for MGUS.

Older individuals who are Black or have a first-degree relative with a HM may benefit from screening to allow for early detection and possible clinical intervention.

High Prevalence of Monoclonal

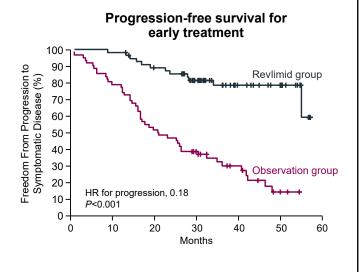


El-Khoury H et al. Blood. 2021;138. Abstract 152

173

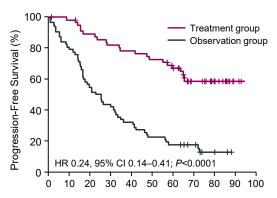
Overview of Current Treatment Approach **MGUS SMM** Close monitoring Close monitoring (observation) (observation) 40 Clinical trial participation should be considered

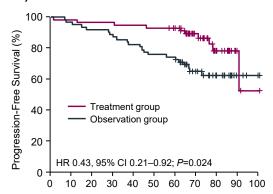
Approaches to SMM Treatment: Only in the Context of a Clinical Study


175

Early Therapeutic Intervention

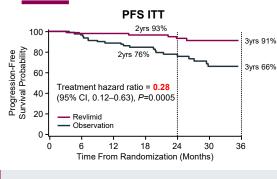
Lenalidomide plus Dexamethasone for High-Risk Smoldering Multiple Myeloma

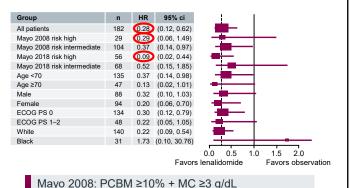

María-Victoria Mateos, M.D., Ph.D., Miguel-Teodoro Hernández, M.D., Pilar Giraldo, M.D., Javier de la Rubia, M.D., Felipe de Arriba, M.D., Ph.D., Lucía López Corral, M.D., Ph.D., Laura Rosiñol, M.D., Ph.D., Bruno Paiva, Ph.D., Luis Palomera, M.D., Ph.D., Joan Bargay, M.D., Albert Oriol, M.D., Felipe Prosper, M.D., Ph.D., Javier López, M.D., Ph.D., Eduardo Olavarría, M.D., Ph.D., Nuria Quintana, M.D., José-Luis García, M.D., Joan Bladé, M.D., Ph.D., Juan-José Lahuerta, M.D., Ph.D., and Jesús-F. San Miguel, M.D., Ph.D.


HR, hazard ratio Mateos MV et al. N Engl J Med. 2013;369:438.

QuiRedex Phase 3 Trial Len-dex vs No Treatment in High-Risk SMM

Median follow-up (n=119): 75 mos

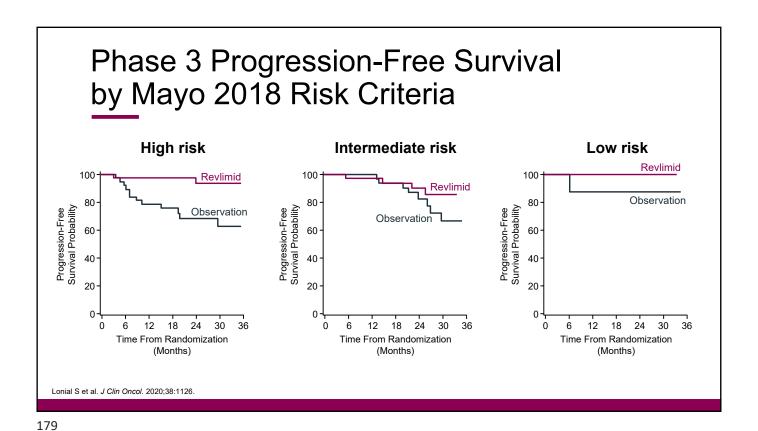



Early treatment with Rd significantly delayed the TTP to myeloma with a benefit in OS

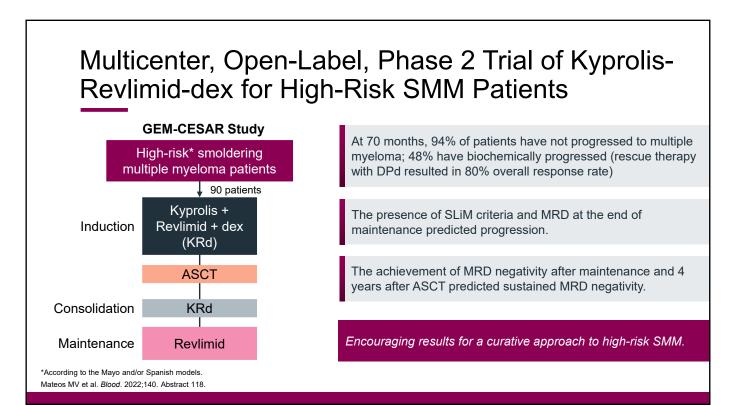
Mateos MV et al. N Engl J Med. 2013. Mateos MV et al. Lancet Oncol. 2016.

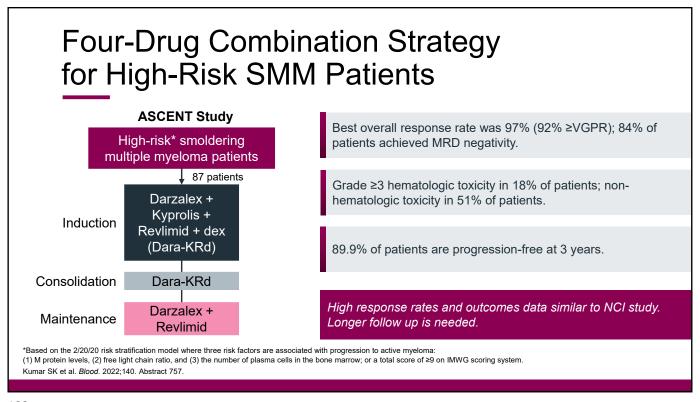
177

Revlimid vs Observation Alone in Patients With SMM

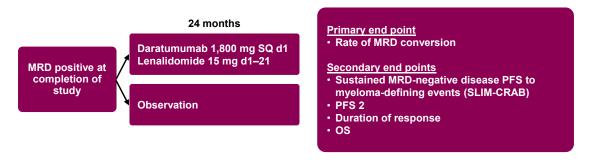


Criteria: PCBM ≥10% and sFLC ratio >8 or <0.125 Mayo 2008. PCBM ≥ Mayo 2018: 2/20/20


- N=182, intermediate/high-risk SMM (BMPC% ≥10% and aberrant (FLC) ratio (<0.26 or >1.65)
- 1:1 randomization lenalidomide 25 mg day 1 to 21 in 28-day cycle vs observation
- Median FU 35 mnd, median time on len 23 cycles, len discontinued in 51% of patients


Early treatment with R significantly prevented the progression to MM, especially in the high-risk subgroup.

E3A06 Study. Lonial S et al. J Clin Oncol. 2019;38:1126.


Open-Label, Phase 2 Trial of Kyprolis-Revlimiddex for High-Risk SMM Patients **NCI Study** At a median potential follow-up time of 31.9 months High-risk* smoldering (range, 6.7-102.9 months), the MRD-negative CR rate multiple myeloma patients was 70.4% ↓ 54 patients Kyprolis + 8 cycles of The median sustained MRD duration was 5.5 years Revlimid + dex combination therapy (KRd) The 8-year probability of being free from progression to multiple myeloma was 91.2%, and no deaths occurred 2 years of Very encouraging results for a curative approach to high-risk Revlimid maintenance SMM. *According to the Mayo and/or Spanish models Kazandjian D et al. JAMA Oncol. 2021 Nov 1;7(11):1678-1685

A Phase 2 Study of Darzalex, Velcade, Revlimid, and Dex in High-Risk SMM (DFCI 21-007) Cycles 1-2 Cycles 3-6 Cycles 7-12 Cycles 13-24 Primary end point • MRD negativity rate at 2 Darzalex years Darzalex 1,800 mg SQ d1, 8, 15, 22 Darzalex Darzalex Secondary end points 1,800 mg SQ d1, 15 1,800 mg SQ d1 1,800 mg SQ d1 Sustained MRD-negative disease assessed at 6 months, 1 year, and 2 years Velcade Velcade Velcade Velcade 1.3 mg/m² SQ d1, 8, 15 1.3 mg/m² SQ d1. 15 1.3 mg/m² SQ d1, 15 High-risk smoldering 1.3 mg/m² SQ d1, 8, 15 MRD · PFS to myeloma-defining myeloma events (SLIM-CRAB) Revlimid 25 mg PO d1–21 Revlimid 15 mg PO d1–21 Revlimid 15 mg PO d1-21 Revlimid 25 mg PO d1–21 • PFS 2 Dexamethasone 20 mg d1, 15 Dexamethasone 20 mg d1, 15 · Duration of response Dexamethasone Dexamethasone · os 20 mg weekly 20 mg weekly · To assess safety High-risk SMM defined as having one of the following two criteria: 1. High risk per "20-2-20" Criteria defined as presence of any two 2. Presence of ≥10% BMPC and at least one of the following: of the following: **Evolving pattern** Serum M spike ≥2 gm/dL Involved to uninvolved free light chain (FLC) ratio ≥20 Bone marrow PC% ≥20% Abnormal PC immunophenotype (≥95% of BMPCs are clonal) and reduction of ≥1 uninvolved immunoglobulin isotype. (Only IgG; IgA and IgM will be considered) High-risk cytogenetics defined as presence of t(4;14), t(14;16), t(14;20), OR total score of 9 using the following scoring system: 17p deletion, TP53 mutation, 1g21 gain • FLC ratio: >10-25 = 2, >25-40 = 3, >40 = 5 Serum M protein (g/dL): >1.5–3 = 3, >3 = 4 BMPC%: >15–20 = 2, >20–30 = 3, >30–40 = 5, >40 = 6 FISH abnormality t(4,14), t(14,16), 1q gain, or del13q = 2

A Phase 2 Study of Daratumumab, Bortezomib, Lenalidomide, and Dex in High-Risk Smoldering Multiple Myeloma: Part 2

 Randomization of MRD positive to observation vs 2 years of daratumumab/lenalidomide; primary end point MRD conversion to negative

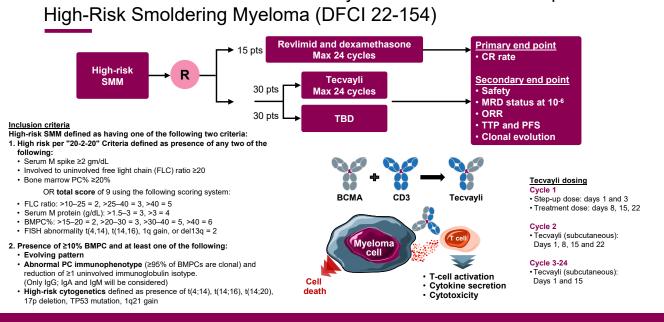
Dara-RVD in High-Risk SMM

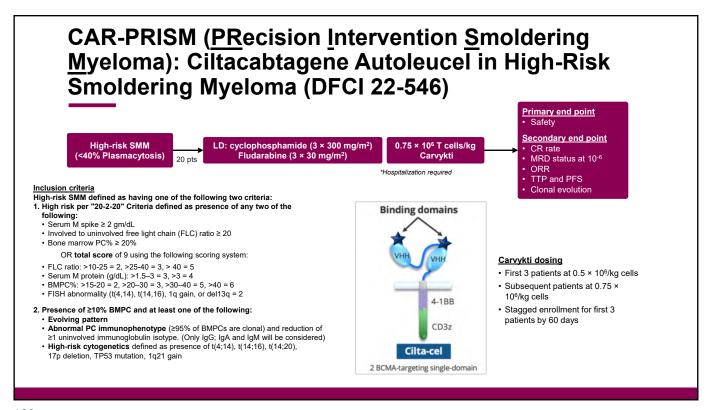
- · 30 patients have been enrolled to part 1 with a median follow-up of 14 months
- The median age 60 years old (range 36-77).
- 90% of patients were classified as either high (18, 60%) or intermediate risk (9, 30%) per Mayo 2018 criteria
- 12 patients (40%) had high-risk FISH results
 - 10 with 1q gain
 - 2 with t(4:14)
 - 1 with t(14;16)
 - 1 with del 17p

Safety

- Most common grade 3 toxicities included neutropenia (17%), ALT increased (10%), hypertension (7%) and diarrhea (7%)
- Upper respiratory infections occurred in 66% of patients (COVID-19 infection in 10 patients, only 1 grade 3)
- · No patients discontinued therapy due to toxicity

Efficacy


- The overall response rate is 87% with 40% CR, 23% VGPR, and 23% PR
- · 63% of patients achieved VGPR or greater
- MRD was evaluable in 24 patients with at least 6 months of follow-up; MRD negativity rate is 58% (14/24) and 38% (9/24) at thresholds
 of 10⁻⁵ and 10⁻⁶, respectively
- · No patients have progressed on treatment
- Stem cell collection was successful in all eligible patients with average stem cell yield of 5.57 × 106 CD34+ cells/kg


185

Immunotherapy in SMM: Why It May Be Ideal

- May prevent progression via immune stimulation and enhanced surveillance of the malignant clone
- Potentially eradicate the disease at an early stage when T cells are more functional
- Bispecific antibodies and CAR T-cell therapy show tremendous results in RRMM
- · Potential for even greater benefit in SMM patients compared to RRMM
- Better understanding of immune toxicities and subsequent management
- · Avoids exposure to "traditional" combination regimens used in MM

Immuno-PRISM (<u>PR</u>ecision <u>Intervention S</u>moldering <u>Myeloma</u>): A Randomized Phase 2 Platform Study of Select Immunotherapies for High-Risk Smoldering Myeloma (DFCI 22-154)

Summary

- Precursor plasma cell disorders are characterized by the presence of abnormal clonal plasma cells without any end organ damage.
- MGUS is a common condition; prevalence increases with age.
- There is variable risk of progression from MGUS and SMM to overt myeloma; clinical risk models associated with risk of progression. We are still lacking molecular markers.
- Screening efforts are under way.
- Single arm study data show benefit with early intervention.
- Patients with high-risk SMM should be offered treatment on clinical trials.
- Participation in observational/interventional studies is key to finding out which patients can benefit the most from early treatment and what is the best treatment to offer early. To identify molecular markers of progression vs stable disease.

189

Please take a moment to answer two questions about this presentation.

Minimal Residual Disease and High-Risk Multiple Myeloma

Clifton C. Mo, MD
Dana-Farber Cancer Institute
Boston, Massachusetts

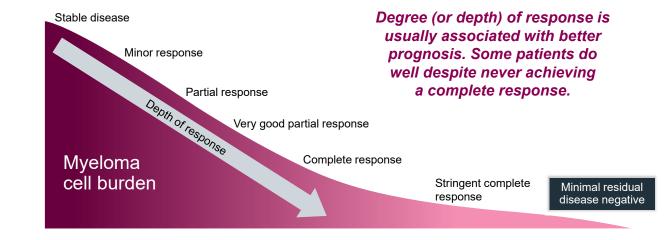
191

Goals of Multiple Myeloma Therapy

Reduce the amount of M protein (as measured by serum protein electrophoresis) or light chains (as measured via the free light chain test) to the lowest level possible.

Eliminate myeloma cells from the bone marrow (as measured via minimal residual disease [MRD] testing).

Improve quality of life with as few treatment side effects as possible.



Provide the longest possible period of response before first relapse.

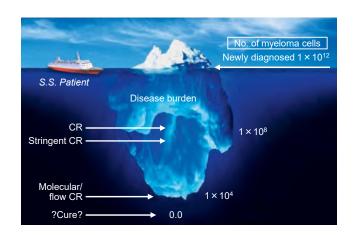
Prolong overall survival.

Measuring Response to Therapy

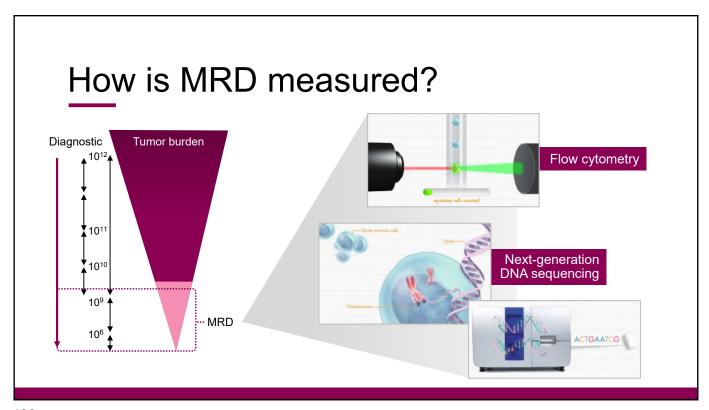
ClonoSEQ is an FDA-approved next-generation sequencing (NGS) test to measure MRD in multiple myeloma patients Palumbo A et al. *J Clin Oncol.* 2014;32:587.

Kumar S et al. *Lancet Oncol.* 2016;17:e328.

193


What is MRD?

The presence of small amounts of myeloma cells in the body after treatment


MRD tests can detect at least 1 cell in 1,000,000.

Why do we need to measure MRD?

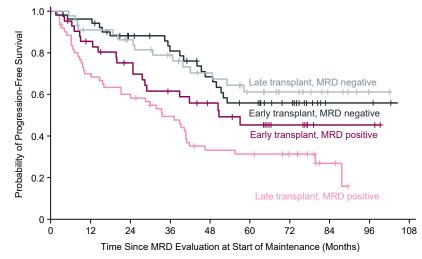
- With new and more effective treatments, more patients achieve CR
- However, achieving a CR does not necessarily mean that all myeloma cells are gone
- Routine blood tests are not sensitive enough to detect these remaining cells

195

Comprehensive Response Assessment

Right now, measurement of MRD depends on counting cells or DNA sequences in bone marrow samples

What about other areas of the body?


Imaging (with PET/CT scan) is also required to detect residual disease outside of the bone marrow

197

Why is it important to achieve MRD negativity?

Patients who achieve MRD negativity following treatment experience longer remission than those who are still MRD positive after treatment.

MRD by next-generation sequencing (sensitivity 1 ×10-5)

Determination Study. Richardson PG et al. N Engl J Med. 2022;387:132.

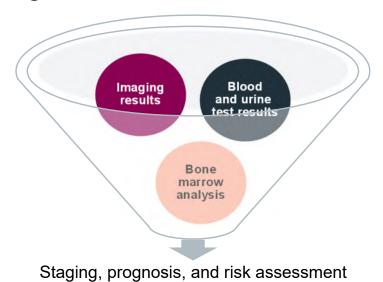
MRD Summary

- MRD is the deepest response after myeloma treatment, including bone marrow MRD and imaging MRD. NGF and NGS are the two most commonly used marrow MRD tests. Blood-based MRD is in exploration.
- MRD has been associated with longer PFS and OS to predict lower risk of progression. Modern combination therapies show increasingly higher MRD negativity rates.
- MRD response–directed therapy has been applied in more and more clinical trials to explore how to guide treatment decisions in myeloma.
- MRD is also useful as an end point in clinical trials helping to expedite new drug approval in myeloma.

199

What is high-risk multiple myeloma and why is it important to find out if you have it?

Patients may not respond well to standard treatment.


Patients can have poorer outcomes.

Risk is related to changes (mutations) in the DNA of the myeloma cells.

Helps your doctor

- Determine your prognosis
- Select the treatment that is right for you

Assessing Risk

201

High-Risk Disease Definitions

Revised International Staging System (R-ISS)¹

R-ISS Stage I

- ISS² stage I
 - Serum β2M level <3.5 mg/L
- Serum albumin level ≥3.5 g/dL
- No high-risk CA*
- Normal LDH level

R-ISS Stage II

All other possible combinations

R-ISS Stage III

- ISS² stage III
 - Serum β2M level ≥5.5 mg/L
- High-risk CA* or high LDH level

Mayo Clinic Stratification for Myeloma & Risk-Adapted Therapy (mSMART)³

High risk

- Genetic abnormalities*
 - t(4;14)
- del 17p
- t(14;16) - t(14;20)
- p53 mutationGain 1q
- R-ISS Stage 3
- High plasma cell S-phase
- GEP: high-risk signature
- Double-hit myeloma: any two high-risk genetic abnormalities
- Triple-hit myeloma: three or more high-risk genetic abnormalities

Standard risk

- All others including:
 - Trisomies
 - t(11;14)
 - t(6;14)

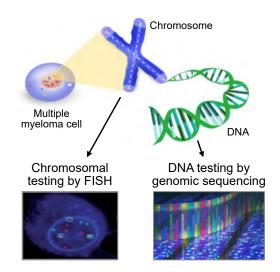
Additional high-risk features

· Disease features

- Other cytogenetic and genetic abnormalities
- Plasma cell leukemia
- Extramedullary disease
- Renal failure

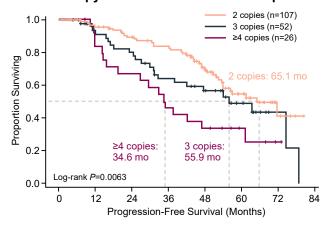
· Patient features

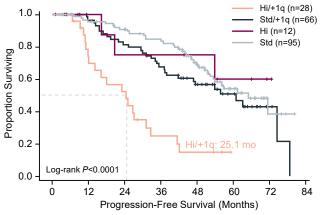
- Comorbidities
- Frailty


· Response features

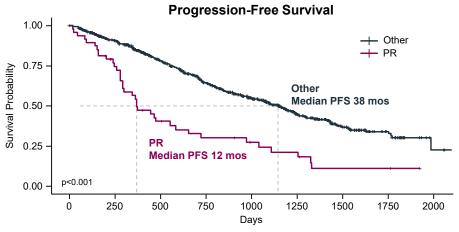
- Lack of response to therapy
- Short first PFS

1. Palumbo A et al. J Clin Oncol. 2015;33:2863. 2. Griepp PR et al. J Clin Oncol. 2005;23:3412. 3. Mikhael J et al. Mayo Clin Proc. 2013;88:360.


Why is genomic sequencing important in myeloma risk assessment?


- Genetic changes in myeloma cells may affect prognosis and treatment selection
- Using samples from the bone marrow—specific tests look at these genetic changes
- Some tests are used routinely and look at the chromosomal changes (FISH)
- Newer tests assess changes in the **DNA** (gene expression profiling and next-generation sequencing)
 - Ask your doctor if these tests are available
- All patients in the MMRF CoMMpass study had genomic sequencing from diagnosis to relapse. The resulting data provides detailed genetic profiles for every myeloma patient at every stage of their disease!

203

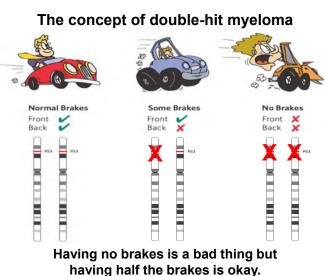

MMRF CoMMpass Findings: Chromosome 1 Copy Number and Other Cytogenetics Copy number of chromosome 1q Cytogenetics 1.0 | Cytogenetics | Cyt

Hi, high-risk cytogenetics: t(4;14), t(14;16) and/or del(17p); Std, standard-risk cytogenetics Schmidt TM et al. *Blood Cancer J.* 2019;9:94.

MMRF CoMMpass Findings: Uncovering a High-Risk Proliferation Group (PR)

Approximately 25% of multiple myeloma patients transition to the PR group at relapse, which is mostly characterized by RAS/RAF and CDK pathway-activating alterations.

PR patients progress almost three times as fast as all other groups combined.


205

PFS, progression-free survival

MMRF CoMMpass Findings: Identifying Double-Hit Multiple Myeloma

- Identification of high-risk disease is evolving from FISH testing to genetic mutation analysis
- CoMMpass has identified the highest-risk group, known as double-hit multiple myeloma

Key CoMMpass finding: FISH testing alone cannot identify whether patients have double-hit myeloma.

Despite recent improvements in treatment, high-risk patients have not experienced the same benefit as patients with standard risk.

Therefore, the treatment of high-risk patients is a very important focus of research.

207

Approach to Treatment: Risk-Adapted Therapy

Risk-adapted therapy

Aims to treat patients with the therapy that will work best for them while decreasing the side effects from treatment

Patients with standard-risk myeloma are given a less-intense but effective treatment that should control their myeloma.

Patients with
high-risk myeloma
are given a stronger
treatment designed
to be effective
against their specific
form of myeloma.

Summary of High-Risk Subsets in Contemporary Newly Diagnosed Multiple Myeloma Trials

Study	Treatment arms	Total number of patients	High risk definition	Number of high-risk myeloma patients
SWOG-1211 ¹	RVd vs RVd-Empliciti	100	GEP ^{hi} , del17p, t(14;16), t(14;20), Amp1q21, elevated LDH, pPCL	RVd = 52 RVd-Elo = 48
SWOG-0777 ²	RVd vs Rd	525	del17p, t(14;16), or t(4;14)	Combined n=44
MAIA ³	DRd vs Rd	737	del17p, t(14;16), or t(4;14)	DRd = 48 Rd = 44
ALCYONE ⁴	D-VMP vs VMP	706	del17p, t(14;16), or t(4;14)	D-VMP = 53 VMP = 45
CASSIOPEIA ⁵	Darzalex-VTd vs VTd	1,085	del17p or t(4;14)	Dara-VTd = 82 VTd = 86
STAMINA ⁶	Tandem transplant vs ASCT/RVD vs ASCT	758	ISS 3, del13, del 17p, t(4;14), t(14;16), t(14;20)	Tandem = 72 ASCT/RVD = 76 ASCT = 75

The high-risk myeloma definition is not uniform across the contemporary randomized phase 3 trials and accounts for a small subset of study populations.

1. Usmani SZ et al. Lancet Haematol. 2021. 2. Durie B et al. Lancet. 2017. 3. Facon T et al. N Engl J Med. 2018. 4. Mateos MV et al. N Engl J Med. 2018.

5. Moreau P et al. Lancet. 2019. 6. Staudtmaeur E et al. J Clin Oncol. 2018.

209

Darzalex Meta-Analysis in High-Risk Multiple Myeloma

Six phase 3 trials comparing standard treatment regimens with or without Darzalex in newly diagnosed¹⁻³ or relapsed/refractory⁴⁻⁶ myeloma patients with high-risk cytogenetics

High risk defined as the presence of t(4;14), t(14;16), or del(17p).

Addition of Darzalex to backbone regimens improved PFS of patients with high-risk cytogenetic features in both frontline and relapsed settings.

PFS benefit for high-risk patients was greater in relapsed setting compared to frontline.

PFS benefit for standard-risk patients was similar in both relapsed and frontline settings.

Results were similar regardless of backbone regimens.

Giri S et al. JAMA Oncol. 2020;6:1.

1. MAIA Trial. Facon T et al. N Engl J Med. 2019;380:2104. 2. CASSIOPEIA Trial. Moreau P et al. Lancet. 2019;394:29. 3. ALCYONE Trial. Mateos MV et al. Lancet. 2020;395:132. 4. POLLUX Trial. Dimopoulos MA et al. N Engl J Med. 2016;375:1319. 5. CASTOR Trial. Palumbo A et al. N Engl J Med. 2016;375:754. 6. CANDOR Trial. Usmani SZ et al. Blood. 2019;134. Abstract LBA-6.

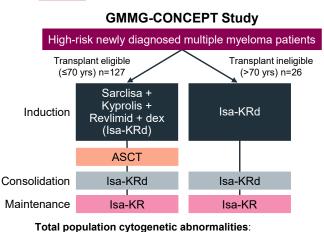
Treatment Regimens for High-Risk Disease Features

Kyprolis-Revlimid-dex (KRd) vs Revlimid-Velcade-dex (RVd) retrospective chart review¹

- 154 consecutive high-risk* newly diagnosed myeloma patients treated with KRd (n=87) and RVd (n=67) at Memorial Sloan Kettering Cancer Center from 2015 to 2019
- · Patients receiving KRd vs RVd had:
 - Greater depth of response
 - Significant improvement in PFS (especially those who received early ASCT)
- R-ISS stage II and III (compared to stage I) were significant predictors for progression or death
- More than 6 cycles of treatment was associated with longer PFS and OS

*High-risk cytogenetic abnormalities defined as 1q+ (gain or amp), t(4;14), t(14;16), t(14;20), and/or del(17p) or monosomy 17.

OPTIMUM Study²

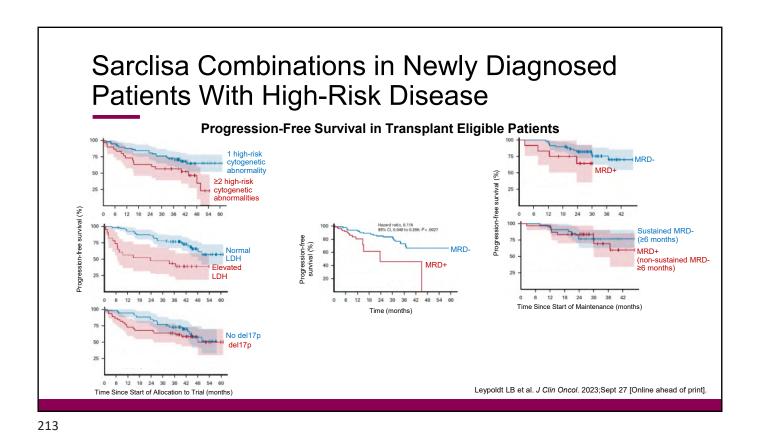

- Study to evaluate the efficacy of Darzalexcyclophosphamide-Velcade-Revlimid-dex (Dara-CyVRd) induction followed by ASCT and 2 rounds of consolidation with Dara-VR (with or without dex) in 107 ultra high-risk† patients with multiple myeloma and plasma cell leukemia (PCL)
- By end of second consolidation, 46.7% of patients were MRD negative (10⁻⁵); 84% of patients who were MRD negative after ASCT sustained their MRD negativity at the end of second consolidation
- 86% of patients were alive and 77% were progression free at 30 months

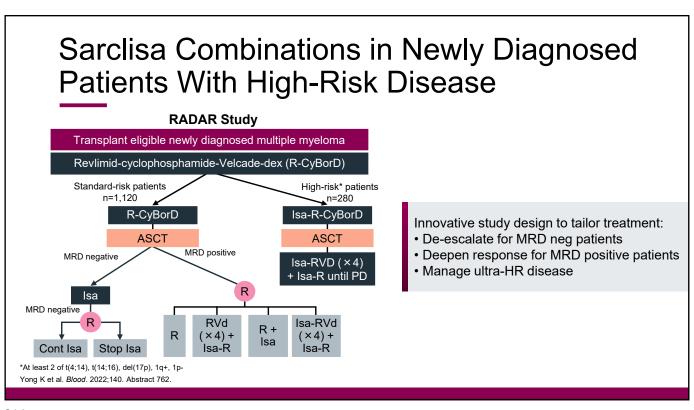
 $^{\dagger}\ge 2$ high-risk lesions: t(4;14), t(14;16), t(14;20), gain(1q), del(1p), del(17p), or SKY92 risk signature.

1. Tan C et al. Blood. 2022;140. Abstract 752. 2. Kaiser MF et al. Blood. 2022;140. Abstract 758

211

Sarclisa Combinations in Newly Diagnosed Patients With High-Risk Disease




44% del(17p); 38.4% t(4;14); 15.2% t(14;16); 36% >3 copies of 1q21; 30.4% ≥2 high-risk cytogenetic abnormalities

Leypoldt LB et al. J Clin Oncol. 2023;Sept 27 [Online ahead of print].

Best response (through consolidation) (%)	Transplant eligible (n=99)	Transplant ineligible (n=26)
Overall response rate	94.9	88.5
sCR/CR	72.7	57.7
VGPR	18.2	30.8
PR	4.0	0
SD	0	0
MRD negative (1 × 10 ⁻⁵) in evaluable patients	67.7	54.2
Progression-free survival (months)	Not reached	Not reached
Advance	Towns of the Call of the	Turnentent

Adverse events (% grade ≥3)	Transplant eligible (n=97)	Transplant ineligible (n=25)
Hematologic		
Neutropenia	39.2	28
Leukopenia	24.7	4
Thrombocytopenia	26.8	16
Anemia	14.4	12
Non-hematologic		
Infection	27.8	28
Cardiac	2.1	20

Additional Studies for High-Risk Myeloma

Moving the use of CAR T-cell therapy in earlier stage of disease

Study	Agent	Phase	Patient populations/ study design	High risk definition
KarMMa-4	Abecma	1	High-risk, newly diagnosed MM	R-ISS III
BMT-CTN 1901	Abecma	2	High-risk, newly diagnosed MM	R-ISS III; no prior progression

215

Please take a moment to answer two questions about this presentation.

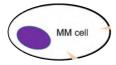
New Drugs and Immunotherapies on the Horizon

Paul G. Richardson, MD Dana-Farber Cancer Institute Boston, Massachusetts

217

Selected Emerging Treatment Options

Cereblon E3 ligase modulators (CELMoDs) **Immunocytokines**

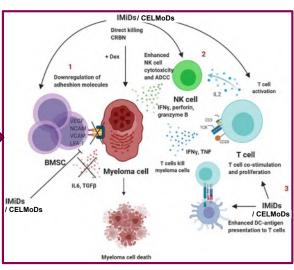

Antibody Drug Conjugates Checkpoint inhibitors

Small-molecule inhibitors

Peptide Drug Conjugates

Next-generation cellular therapies and trispecific antibodies

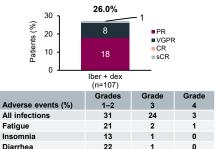

Immune-based therapy approaches in MM



Adapted from Yamamoto L, et al. Front Oncol 2021;10:606368. Copyright © 2021 Yamamoto, Amodio, Gulla and Anderson

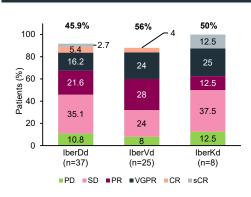
219

Novel accessible, oral treatment options CELMoDs: iberdomide and mezigdomide



Iberdomide: A CELMoD

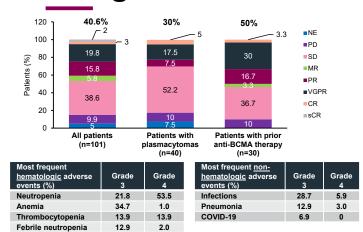
Iberdomide in combination with dexamethasone in patients with RRMM1


107 patients who had received at least 6 prior lines of therapy and 97% were triple-class refractory

22

Muscle spasms

Iberdomide in combination with dex and daratumumab, bortezomib, or carfilzomib in patients with RRMM²

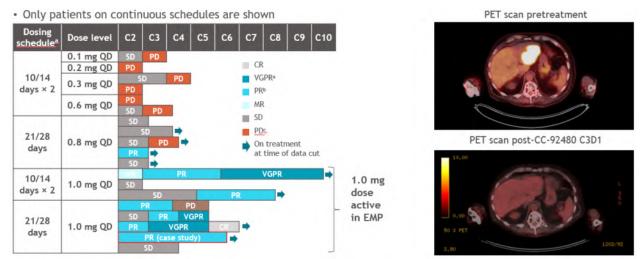

A phase 3 study is under way comparing IberDd with DVd in patients with RRMM

1. Lonial S et al. Lancet Haematol. 2022;9: e822. 2. Lonial S et al. Presented at the 2021 IMW. Abstract OAB-013.

0

221

Mezigdomide: A CELMoD in RRMM

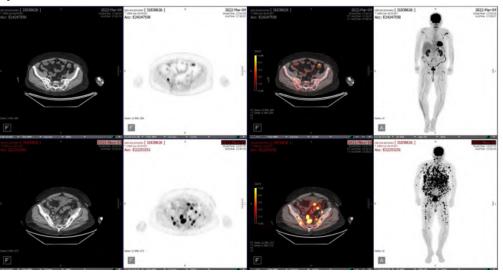


Two phase 3 studies are under way comparing (1) mezigdomide + Kyprolis-dex with Kyprolis-dex and (2) mezigdomide + Velcade-dex with Pomalyst-Velcade-dex in patients with RRMM.

Richardson PG et al. Blood. 2022;140. Abstract 568.

Oriol A et al. Clin Lymphoma Myeloma Leuk. 2023;23. Abstract OA-49. Richardson PG, et al. N Engl J Med 2023; doi: 10.1056/NEJMoa2303194

Mezigdomide +dex (CC-92480) MM-001: responses in patients with extramedullary plasmacytoma in the setting of RRMM


a1 patient in the 21-/28-day 1.0 mg QD cohort had an unconfirmed VGPR as of the data cutoff date. b1 patient in the 21-/28-day 0.8 mg QD cohort had an unconfirmed PR as of the data cutoff date. c1 patient in the 21-/28-day 0.8 mg QD cohort had an unconfirmed PD as of the data cutoff date. C, cycle; CR, complete response; D, day; EMP, extramedullary plasmacytoma; MR, minimal response; PD, progressive disease; PET, positron emission tomography; PR, partial response, QD, once daily; SD, stable disease; VGPR, very good partial response. Richardson PG et al. Oral presentation at the ASCO Annual Meeting; May 29–31, 2020; Virtual Program. Abstract 8500. Updated at ASH 2023

223

Plasmacytomas/EMD- Responses to Mezigdomide (CC92480) + dex in RR MM

After 4 months Of 480/dex

Treatment start at study entry

EMD; extramedullary disease

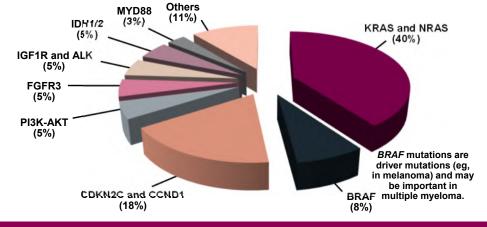
Richardson PG. et al. ASH 2022. Abstract #568.

Pharmacodynamics summary: Mezigdomide in RRMM

MEZI is pharmacodynamically active in patients who were refractory to POM or had received POM in the last regimen

C1D8, cycle 1 day 8; IHC, immunohistochemistry; ISA, isatuximab; NK, natural killer; ref, refractory Richardson PG, et al. ASH 2022. Abstract #568.

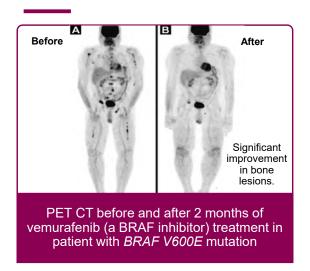
Richardson PG et al. NEJM. 2023


225

Actionable Alterations in MM

These alterations may be the Achilles' heel of myeloma cells?

Personalized medicine efforts have identified molecular alterations for which there are drugs in the clinic


Personalized Medicine Agents Under Clinical Investigation

	Novel agents	
Clinical phase	Personalized medicine	
Phase 3	Venetoclax*	
Phase 1, 2	Abemaciclib* Cobimetinib* Dabrafenib Enasidenib Erdafitinib* Idasanutlin Trametinib Vemurafenib	

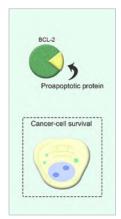
^{*}Being studied in the MyDRUG trial

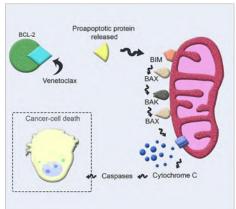
227

BRAF and MEK

- 12 patients treated with
 - BRAFTOVI (encorafenib)
 - MEKTOVI (binimetinib)
- 83% of patients responded to treatment
- Common side effects included blurred vision, macular edema, cramps, arthralgia, diarrhea, rash, and decreased left ventricular function
- Serious side effects included low blood counts and hypertension

A phase 2 study evaluating combined BRAF and MEK inhibition in relapsed/ refractory multiple myeloma patients with activating BRAF V600E mutations

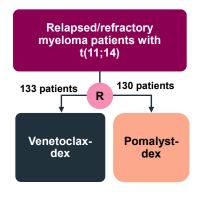

Sharman JP et al. Clin Lymphoma Myeloma Leuk. 2014;14:e161.

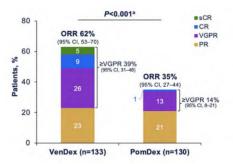

GMMG-Birma Trial. Giesen N et al. Blood. 2023;141:1685.

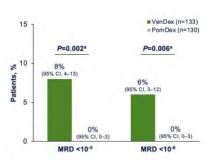
Venetoclax and t(11;14)

Venetoclax is a Bcl-2 inhibitor

- BCL2 inhibitor
- · Induces cancer cell death
- t(11;14) multiple myeloma →
 ↑BCL2 and ↓MCL1
- t(11;14): first predictive marker in multiple myeloma, indicating susceptibility to BCL2 inhibition

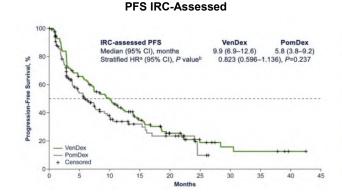


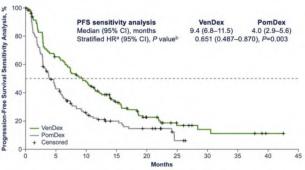

Ehsan H et al. J Hematol. 2021;10:89.


229

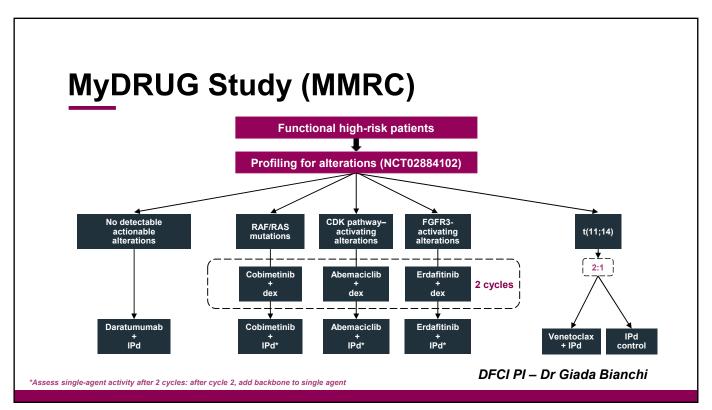
Venetoclax and t(11;14) PFS - all patients t(11;14) translocation Venetoclax bortezomib dex vs placebo bortezomib enetoclax + Velcade-dex dex; 1-3 prior lines Placebo Median follow-up 18.7 mos 22.4 mos venetoclax 11.5 mos placebo OS - all patients High BCL2 gene expression Venetoclax especially active 60 60 in t(11;14) or 40 **BCL2**high MM P=0.034 15 The BELLINI Trial. Kumar SK et al. Lancet Oncol. 2020;21:1630.

Phase 3 Study of Venetoclax in t(11;14)-Positive RRMM Patients

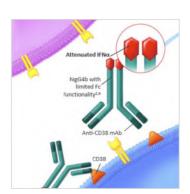



CANOVA Study. Mateos MV et al. Clin Lymphoma Myeloma Leuk. 2023;23. Abstract.

231


Phase 3 Study of Venetoclax in t(11;14)-Positive RRMM Patients

PFS – Post-hoc Sensitivity Analysis



CANOVA Study. Mateos MV et al. Clin Lymphoma Myeloma Leuk. 2023;23. Abstract.

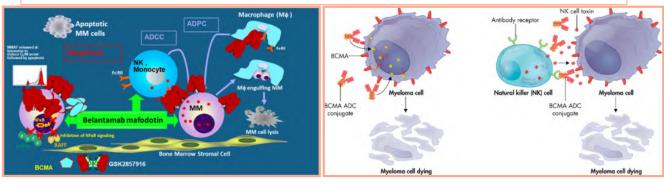
Immunocytokines in RRMM

Modakafusp alfa is an antibody fused to the cytokine interferon-alpha that can bind to CD38 on myeloma cells

100 patients who had a median of 7 prior lines of therapy were treated with different doses of modakafusp (19% had prior CAR T-cell therapy and 14% prior T-cell engagers).

Immunocytokines are engineered to deliver cytokines (a protein produced by immune cells) that can prevent myeloma cells from dividing and to help boost myeloma-fighting immune cells.

Vogl DT et al. Blood. 2022;140. Abstract 565.


Overall response rate was 43% in patients receiving 1.5 mg/kg dose every 4 weeks (n=30); 27% of anti-BCMA exposed patients responded.

Belantamab mafodotin – BCMA-targeted Antibody Drug Conjugate (ADC)^{1,2}

First ADC approved in RRMM (2020)

US and EMA marketing authorisation withdrawn following DREAMM-3 not meeting its primary endpoint3

Remains under investigation in combination regimens in multiple studies including DREAMM-5, DREAMM-7, DREAMM-8, and DREAMM-94

1. Trudel S, et al. Lancet Oncol 2018;19(12):1641–53. 2. Richardson PG, et al. Blood Cancer J 2020;10(10):106.
3. Weisel K, et al. J Clin Oncol 2023;41(16_suppl):8007. 4. Usmani SZ, et al. J Clin Oncol 2023;41(16_suppl):8018.
Left-hand figure adapted fromTai YT, et al. Blood 2014;123(20):3128–38. Right-hand figure adapted from Cho S-F, et al. Front Immunol 2018;9:1821.

235

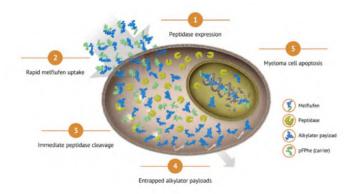
Novel targeted therapies

Melflufen: cytotoxic drug-peptide conjugate

Melphalan flufenamide: novel targeted cytotoxic-peptide drug conjugate mechanism¹

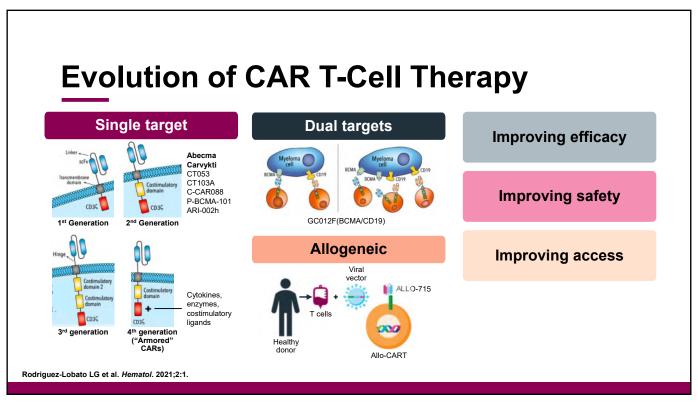
Rapidly taken up by plasma cells due to high lipophilicity

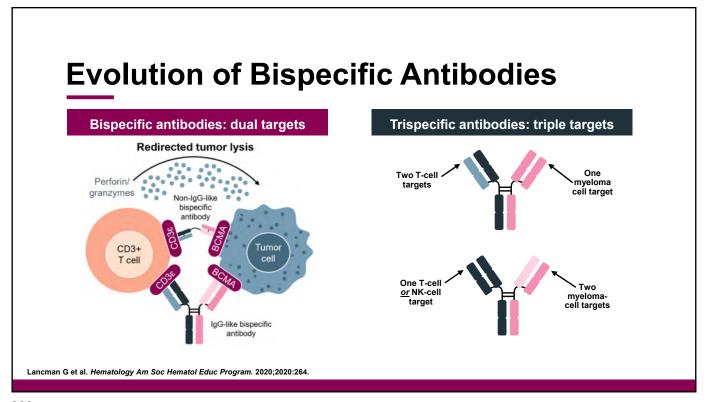
Once inside, aminopeptidases cleave the compound, release melphalan "warhead", where it causes maximal DNA damage to MM


Targeting Extramedullary Disease (EMD) and 'stemness'

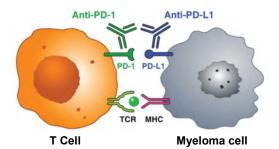
Current dosing/dexamethasone is IV q28d; no mucositis or alopecia seen

Granted FDA priority review in August 2020 and approved in March 2021


FDA approval provisionally held in October 2021; request to withdraw made in December 2022

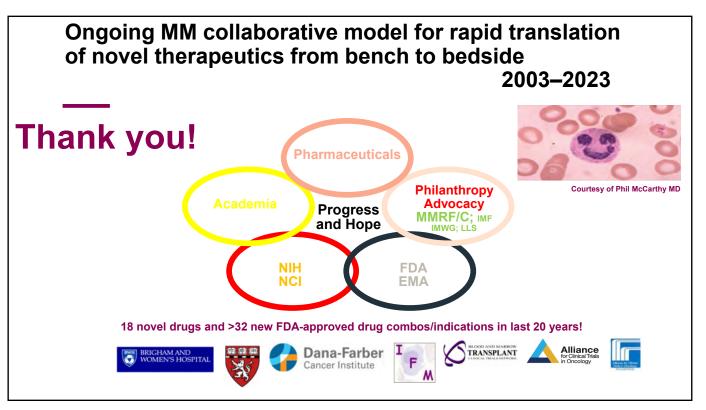

Full approval by EMA, August 2022

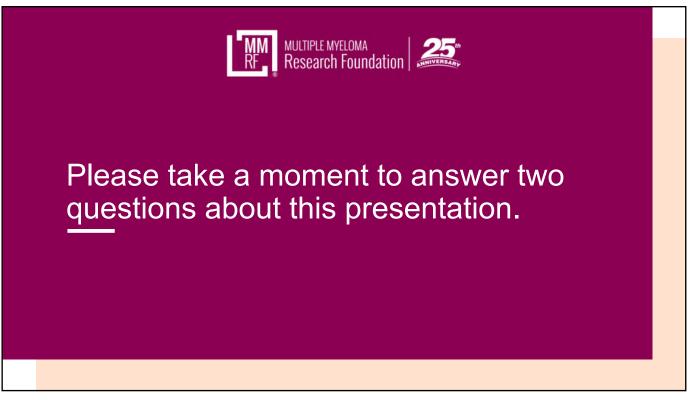
- MM cells exquisitely sensitive to melflufen, including melphalan- and bortezomib-resistant cells^{2,3}
- BMSCs (in MM microenviroment) more sensitive to melflufen than melphalan⁴
 Cytotoxicity of melflufen in MM cells not affected by co-culture with BMSCs
- Active in 17p deleted MM with marked upregulation of CALRETICULIN [CRT]
- · Highly immunogenic and targets both mitochondrial/nuclear DNA


1. Figure adapted from Richardson PG, et al. HemaSphere 2020;4(S1):428, abstract EP945 (EHA 2020 presentation). 2. Chauhan D, et al. Clin Cancer Res 2013;19(11):3019–31. 3. Ray A, et al. Br J Haematol 2016;174(3):397–409. 4. Gebraad A, et al. Cells mesenchymal stem/stromal cells.

Strategies to Improve Immune Regulation of T Cells in MM: Checkpoint Inhibitors

Checkpoint inhibitors: activate T cells by "taking the brakes off"

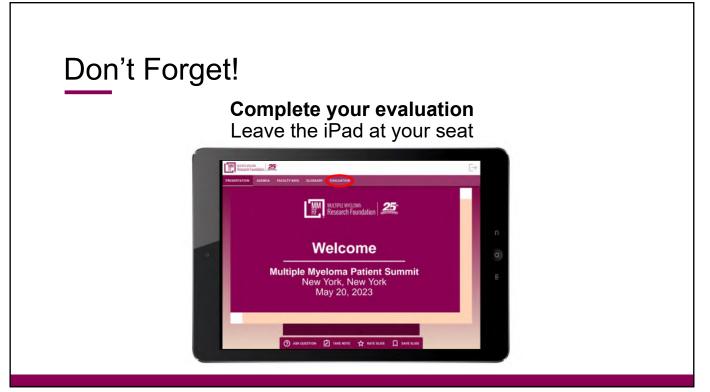



- The cell surface immune checkpoint proteins PD-1/PD-L1 play a crucial role in regulating an immune response
 - Plasma cells in myeloma patients have increased PD-L1 expression; when it binds to PD-1 on T cells, T cell activation is blocked
- Additional checkpoint proteins include
 - LAG3
 - TIM-3
 - TIGIT
- Many checkpoint inhibitors (which are monoclonal antibodies) are FDA approved for other cancers
 - Pembrolizumab (anti-PD-1)
 - Nivolumab (anti-PD-1)
 - Cemiplimab (anti-PD-1)
 - Atezolizumab (anti-PD-L1)
 - Durvalumab (anti-PD-L1)
 - Opdualag (anti-LAG3)

239

Summary and Future Directions

- CELMoDs are emerging as highly active oral agents, with activity in patients who have received prior BCMA-directed therapies including CAR-T's and EMD.
- Efforts are under way to better understand the nature of the disease and to provide patients with a more personalized approach to treatment.
- New immunotherapies are emerging, including immunocytokines, nextgeneration CAR-T's, bispecific/trispecific antibodies, and a potential new role for checkpoint inhibitors, as well as the continued study of ADC's and peptide drug conjugates, the development of next generation small molecules and more.....



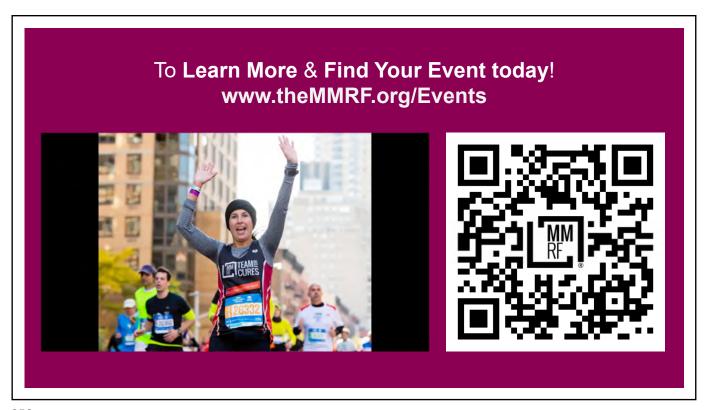
Upcoming Patient Education Events Save the Date

Торіс	Date and Time	Speakers
Patient Summit Virtual	Saturday, January 13, 2024 12:00 PM – 5:15 PM (ET) 9:00 AM – 2:15 PM (PT)	Ajai Chari, MD Tom Martin, MD Sagar Lonial, MD Nancy S. Wong, MSN

For more information or to register, visit **themmrf.org/educational-resources**

247

MMRF Patient Resources



Myeloma Mentors[®] allows patients and caregivers the opportunity to connect with trained mentors. This is a phone-based program offering an opportunity for a patient and/or caregiver to connect one-on-one with a trained patient and/or caregiver mentor to share his or her patient journeys and experiences.

No matter what your disease state—smoldering, newly diagnosed, or relapsed/refractory—our mentors have insights and information that can be beneficial to both patients and their caregivers.

Contact the Patient Navigation Center at 888-841-6673 to be connected to a Myeloma Mentor or to learn more.

249

Need help with travel to a clinical study?

- The MMRF has partnered with the Lazarex Cancer Foundation to help provide more equitable access to clinical studies for multiple myeloma patients
- This partnership is one facet of the MMRF's commitment to improve diversity and representation in myeloma clinical trials
- MMRF has provided \$100,000 over 2 years to Lazarex to fund travel, lodging, and food for patients (and a travel companion) so that they can participate in clinical studies that are appropriate for them
- Patients are funded according to income guidelines and will be reimbursed for allowed expenses
- For more information on this program and to be connected with Lazarex, call our Patient Navigation Center at 1-888-841-6673

